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Data Mining for Biomedical Informatics

Recent technological advances are 
helping to generate large amounts 
of genomic data

-

 

Gene and protein sequences
-

 

Gene-expression data
-

 

Biological networks and phylogenetic 
profiles

-

 

Single Nucleotides Polymorphisms 
(SNPs)

Data mining offers potential solution 
for analysis of large-scale data
•

 

Prediction of the functions of anonymous 
genes

•

 

Identification and summarizarion of 
functional modules

•

 

Associations between genotypes and 
phenotype of interest

Protein Interaction Network



Association Analysis
• Association analysis: Analyzes 

relationships among items (attributes) 
in a binary transaction data
– Example data: market basket data
– Applications in business and industry

• Marketing and sales promotion, inventory  management
• Telecommunication alarm diagnosis

– Potential applications in biology
• Identification of  functional modules from protein complexes
• Noise removal from protein interaction data
• Genotype-phenotype associations

• Two types of patterns
– Itemsets: Collection of items

• Example: {Milk, Diaper}
– Association Rules: X → Y, where X and 

Y are itemsets.
• Example: Milk → Diaper 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  
4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
 

Set-Based Representation of Data

onstransactiTotal
Y and Xcontain  that ons transacti#  s Support, =

Xcontain that onstransacti#
Y and Xcontain  that ons transacti#  c ,Confidence =



Process of finding interesting patterns:
• Find frequent itemsets using a support threshold
• Find association rules for frequent itemsets
• Sort association rules according to confidence
Support filtering is necessary

• To eliminate spurious patterns
• To avoid exponential search

- Support has anti-monotone property: 
X ⊆

 

Y implies σ(Y) ≤

 

σ(X)

Confidence is used because 
of its interpretation as 
conditional probability

Has well-known limitations
Many other measures have been used as well 

Association Analysis

Given d items, there are 2d 

possible candidate itemsets



Different Association patterns

• Traditional frequent  pattern 

• Hyperclique pattern

• Error-tolerant frequent pattern 

• Discriminative pattern

C
ase

C
ontrols



Applications of 
Hypercliques to Biological Data Sets

• Discovery of functional modules from 
protein complexes [Xiong et al, 2005, 
PSB]

• Noise removal [Xiong et al, 2006b, 
IEEE TKDE]
– Data points not a member of any 

hypercliques hypothesized to be noisy
– Improved performance of several data 

analysis tasks (association analysis, 
clustering) on several types of data sets 
(text, microarray data)

– Noise-resistant transformation of protein 
interaction networks [Pandey et al, 2007, 
KDD]



Application I: Association Analysis for 
Identification of Protein Function Modules

A protein complex is a group of two or 
more associated proteins formed by 
protein-protein interaction that is stable 
over time

The TAP-MS dataset by Gavin et al 2002: 
Tandem affinity purification (TAP) – mass 
spectrometry (MS)

Contains 232 multi-protein complexes 
formed using 1361 proteins

Number of proteins per complex range 
from 2 to 83 (average 12 components)

Hypercliques derived from this data can 
be used to discover frequently occurring 
groups of proteins in several complexes

Likely to constitute functional modules

Complexes Proteins

c1 p1, p2

c2 p1, p3, p4, p5

c3 p2, p3, p4, p6

Xiong et al [2005], PSB



Functional Group Verification Using Gene 
Ontology

Hypothesis: Proteins within the same 
pattern are more likely to perform the 
same function and participate in the 
same biological process
Gene Ontology

•

 

Three separate ontologies: 
Biological Process, Molecular 
Function, Cellular Component

•

 

Organized as a DAG describing 
gene products (proteins and 
functional RNA)

•

 

Collaborative effort between 
major genome databases

http://www.geneontology.org



Hyperclique Patterns from Protein 
Complex Data

2 Tif4632 Tif4631 
2 Cdc33 Snp1 
2 YHR020W Mir1 
2 Cka1 Ckb1 
2 Ckb2 Cka2 
2 Cop1 Sec27 
2 Erb1 YER006W 
2 Ilv1 YGL245W 
2 Ilv1 Sec27 
2 Ioc3 Rsc8 
2 Isw2 Itc1 
2 Kre33 YJL109C 
2 Kre33 YPL012W 
2 Mot1 Isw1 
2 Npl3 Smd3 
2 Npl6 Isw2 
2 Npl6 Mot1 
2 Rad52 Rfa1 
2 Rpc40 Rsc8 
2 Rrp4 Dis3 
2 Rrp40 Rrp46 
2 Cbf5 Kre33 
3 YGL128C Clf1 YLR424W 
3 Cka2 Cka1 Ckb1
3 Has1 Nop12 Sik1 
3 Hrr25 Enp1 YDL060W 
3 Hrr25 Swi3 Snf2

3 Kre35 Nog1 YGR103W 
3 Krr1 Cbf5 Kre33

3 Nab3 Nrd1 YML117W 

3 Nog1 YGR103W YER006W 

3 Bms1 Sik1 Rpp2b 

3 Rpn10 Rpt3 Rpt6 

3 Rpn11 Rpn12 Rpn8 

3 Rpn12 Rpn8 Rpn10 

3 Rpn9 Rpt3 Rpt5 

3 Rpn9 Rpt3 Rpt6 

3 Brx1 Sik1 YOR206W 

3 Sik1 Kre33 YJL109C 

3 Taf145 Taf90 Taf60 

4 Fyv14 Krr1 Sik1 YLR409C 

4 Mrpl35 Mrpl8 YML025C Mrpl3 

4 Rpn12 Rpn8 Rpt3 Rpt6 

5 Rpn6 Rpt2 Rpn12 Rpn3 Rpn8 

5 Ada2 Gcn5 Rpo21 Spt7 Taf60

6 YLR033W Ioc3 Npl6 Rsc2 Itc1 Rpc40 

6 Dim1 Ltv1 YOR056C YOR145C Enp1 YDL060W 

6 Luc7 Rse1 Smd3 Snp1 Snu71 Smd2 

6 Pre3 Pre2 Pre4 Pre5 Pre8 Pup3 

7 Clf1 Lea1 Rse1 YLR424W Prp46 Smd2 Snu114

7 Pre1 Pre7 Pre2 Pre4 Pre5 Pre8 Pup3 

7 Blm3 Pre10 Pre2 Pre4 Pre5 Pre8 Pup3

8 Clf1 Prp4 Smb1 Snu66 YLR424W Prp46 Smd2 Snu114 

8 Pre2 Pre4 Pre5 Pre8 Pup3 Pre6 Pre9 Scl1 

10 Cdc33 Dib1 Lsm4 Prp31 Prp6 Clf1 Prp4 Smb1 Snu66 YLR424W 

12 Dib1 Lsm4 Prp31 Prp6 Clf1 Prp4 Smb1 Snu66 YLR424W Prp46 
Smd2 Snu114 

12 Emg1 Imp3 Imp4 Kre31 Mpp10 Nop14 Sof1 YMR093W YPR144C 
Krr1 YDR449C Enp1 

13 Ecm2 Hsh155 Prp19 Prp21 Snt309 YDL209C Clf1 Lea1 Rse1 
YLR424W Prp46 Smd2 Snu114 

13 Brr1 Mud1 Prp39 Prp40 Prp42 Smd1 Snu56 Luc7 Rse1 Smd3 
Snp1 Snu71 Smd2 

39 Cus1 Msl1 Prp3 Prp9 Sme1 Smx2 Smx3 Yhc1 YJR084W Brr1 
Dib1 Ecm2 Hsh155 Lsm4 Mud1 Prp11 Prp19 Prp21 Prp31 Prp39 
Prp40 Prp42 Prp6 Smd1 Snt309 Snu56 Srb2 YDL209C Clf1 Lea1 
Luc7 Prp4 Rse1 Smb1 Smd3 Snp1 Snu66 Snu71 YLR424W

List of maximal hyperclique patterns at a support threshold 2 and an h-confidence 
threshold 60%. [1] Xiong et al. (Detailed results are at http://cimic.rutgers.edu/~hui/pfm/pfm.html)



Summary 
Number of hypercliques:

•

 

Size-2: 22, Size-3: 18, Size-4: 3, Size-5: 2 

•

 

Size-6: 4, Size-7: 3, Size-8: 2, Size-10: 1 

•

 

Size-12: 2, Size-13: 2, Size-39: 1

In most cases, proteins identified as hypercliques are 
found to be functionally coherent and part of same 
biological process when evaluated using GO 
hierarchies



Function  Annotation for Hyperclique 
{PRE2 PRE4 PRE5 PRE6 PRE8 PRE9 PUP3 SCL1 } 

GO hierarchy 
shows that the 
identified proteins 
in hyperclique
perform the same 
function and are 
involved in the 
same biological 
process



More Hyperclique Examples..
# distinct proteins in cluster = 12

# proteins in one group = 12



Functional Annotation of Uncharacterized 
Proteins

Hyeperclique Pattern: {Emg1 Imp3 
Imp4 Kre31 Mpp10 Nop14 Sof1 YMR093W 
YPR144C Krr1 YDR449C Enp1}

8 of the 12 proteins have an 
annotation of “RNA binding”

Other 4 proteins have no 
functional annotation 

Hypothesis: Unannotated 
proteins have same molecular 
function “RNA binding”, since 
hypercliques tend to have 
proteins that are functionally 
coherent



Application II: Association Analysis-based 
Pre-processing of Protein Interaction Networks

• Overall Objective: Accurate inference of protein function 
from interaction networks

• Challenges: 
– Protein interaction networks are noisy and incomplete [Hart et al, 2006]
– Adverse impact on accuracy of functional inferences [Deng et al, 2003]

• Potential Approach: Pre-processing of interaction networks

• Transform graph G=(V,E,W) into G’=(V,E’,W’)

• Tries to meet three objectives:
– Addition of potentially biologically valid edges
– Removal of potentially noisy edges
– Assignment of weights to the resultant set of edges that indicate their reliability

Input PPI 
graph

Transformed PPI 
graph where Pi and Pj 
are connected if (Pi ,Pj ) 

is a hyperclique 
pattern



Validation of Final Network
• Use FunctionalFlow algorithm [Nabieva et al, 2005] on the original 

and transformed graph(s)
– One of the most accurate algorithms for predicting function from 

interaction networks
– Produces likelihood scores for each protein being annotated with one of 

75 MIPS functional labels
• Likelihood matrix evaluated using two metrics

– Multi-label versions of precision and recall:

mi = # predictions made, ni = # known annotations, ki = # correct predictions

– Precision/accuracy of top-k predictions
• Useful for actual biological experimental scenarios



Test Protein Interaction Networks

• Three yeast interaction networks with different types of 
weighting schemes used for experiments
– Combined

• Composed from Ito, Uetz and Gavin (2002)’s data sets
• Individual reliabilities obtained from EPR index tool of DIP
• Overall reliabilities obtained using a noisy-OR

– [Krogan et al, 2006]’s data set
• 6180 interactions between 2291 annotated proteins
• Edge reliabilities derived using machine learning techniques

– DIPCore [Deane et al, 2002]
• ~5K highly reliable interactions in DIP
• No weights assigned: assumed unweighted



Results on Combined data set

Precision-Recall Accuracy of top-k 
predictions



Noise removal capabilities of H- 
confidence

• H-confidence and hypercliques 
have been shown to have noise 
removal capabilities [Xiong et 
al, 2006]

• To test its effectiveness, we 
added 50% random edges to 
DIPCore, and re-ran the 
transformation process

• Fall in performance of 
transformed network is 
significantly smaller than that 
in the original network



Summary of Results
• H-confidence-based transformations generally 

produce more accurate and more reliably weighted 
interaction graphs
– Removes potentially spurious edges
– Adds potentially biologically viable edges
– Provides meaningful weights for the resultant edges

• Generally, the less reliable the weights assigned to the 
edges in the raw network, the greater improvement in 
performance obtained by using an h-confidence- 
based graph transformation



Application III: SNP Association Study

• Given: A data set that has genetic variations (SNPs) of a group 
of subjects and their associated Phenotypic (Disease).

• Objective: Finding a combination of genetic characteristics that 
best predicts the phenotype under study.

SNP1 SNP2 … SNPM Disease

Patient 1 1 1 … 1 1

Patient 2 0 1 … 1 1

Patient 3 1 0 … 0 0

… … … … … …

Patient N 1 1 1 1

Genetic Variation in Patients (SNPs) as Binary Matrix and 
Survival/Disease (Yes/No) as Class Label.



SNP (Single nucleotide 
polymorphism)

• Definition of SNP (wikipedia)
– A SNP is defined as a single base change in a DNA 

sequence that occurs in a significant proportion (more 
than 1 percent) of a large population

– How many SNPs in Human genome?
– About 10,000,000

Individual 1            A G C G T G A T C G A G G C T A
Individual 2            A G C G T G A T C G A G G C T A
Individual 3            A G C G T G A G C G A G G C T A
Individual 4            A G C G T G A T C G A G G C T A
Individual 5            A G C G T G A T C G A G G C T A

SNP

Each SNP has 3 values

( GG / GT / TT )

( mm / Mm/ MM)



Why are SNPs interesting?
• In human beings, 99.9 percent bases are same. 
• Remaining 0.1 percent makes a person unique. 

– Different attributes / characteristics / traits 
• how a person looks, 
• diseases a person develops. 

• These variations can be:
– Harmless (change in phenotype)
– Harmful (diabetes, cancer, heart disease, Huntington's disease, and 

hemophilia )
– Latent (variations found in coding and regulatory regions, are not 

harmful on their own, and the change in each gene only becomes 
apparent under certain conditions e.g. susceptibility to lung cancer)



Issues in SNP Association Study
• In disease association studies, number of SNPs varies from a 

small number (targeted study) to over a million (GWA 
studies)

• Number of samples is usually small
• Data sets may have noise or missing values
• Phenotype definition is not trivial (ex. definition of survival)
• Environmental exposure, food habits etc adds more 

variability
• Complex interaction among a number of genes may be 

responsible for the phenotype
• Genetic heterogeneity among individuals for the same 

phenotype



Existing Analysis Methods

• Univariate Analysis: single SNP tested against the 
phenotype for correlaton and ranked.
– Cannot identify interacting SNPs

• Multivariate Analysis: groups of SNPs of size two 
or more are tested for possible association with the 
phenotype.
– Often infeasible in practice 

• Some approaches employ classification methods 
such as SVMs to classify cases and controls.



Myeloma Data
SNP data for Myeloma disease:

• 3404 SNPs (Selected 
according to potential 
relevance to Myeloma)

• 70 Cases (Patients survived 
shorter than 1 year)

• 73 Controls (Patients 
survived longer than 3 
years)

• 3404 SNPs come from 
various regions of the 
chromosome, i.e., introns, 
synonymous , non- 
synonymous, 3’ UTR, 5’ 
UTR etc.



Univariate Analysis on Myeloma Data

• Individual SNP associations with true phenotype are not 
distinguishable from random permutation of phenotype.

• A combination of SNPs may be more predictive than individual SNPs.



Evaluating the Utility of Univariate 
Rankings for Myeloma Data

Feature
Selection

Leave-one-out
Cross validation

With SVM

Leave-one-out Cross 
validation with SVM

Feature Selection
Biased Evaluation Clean Evaluation



Performance of Predictive Model for 
Selected categories of SNPs

Non – 
synonymous

Introns Synonymous Admixture UTR Other
Intergenic

Accuracy     
(%)

66.43 
58.74
51.74
72.72
71.33
54.54 
69.99

Nonsyn + Promolign (Syn + Introns): 75.75 %



Random Permutation test

• Accuracies larger than 65% are highly significant. 
(estimated p-value is < 10-4)

• 10,000 random permutations of real phenotype generated.
• For each one, Leave-one-out cross validation using SVM.



MDR

Promise: Finds interactions between SNPs
Drawbacks: Computationally infeasible for large number of SNPs  

Statistical significance tends to be low as the number 
of combinations are  large

Multifactor dimensionality reduction for
detecting gene–gene and gene–environm
ent interactions in pharmacogenomics studies 
Marylyn D Ritchie  et.  a l. Pharmacogenomics 2005



Error-Tolerant Discriminative Pattern
Handles noise and makes use of the additional class information to 
prune high dimensional search space

Error-tolerant support ratio of a pattern P = {i1, i2,…, im} on two classes

where

A pattern P is an error-tolerant discriminative pattern if sε(P)>=δ (in 
one class) and P’s support ratio >=θ, where δ is a user specified 
minimum support threshold and θ is a user specified minimum support 
ratio threshold

is the number of 
transactions having at 
most a fraction ε

 

of the 
items missing

C
ontrols

C
ases



Error-Tolerant Discriminative Pattern in SNP 
data

C
lass A

 
(survival < 1yr)

C
lass B

 
(survival > 3 yr)

59/70

17/73

A discriminative SNP set of size 13

This pattern as a feature



Association Pattern Analysis 
Challenges

•
 

Handling non-binary data (e.g
 

gene expression data)

•
 

Discovery of patterns in noisy data
–

 

Error-tolerant patterns

•
 

Incorporating domain knowledge
–

 

Case/Control
–

 

Pathways

•
 

Summarization and Evaluation of patterns



Protein Function Prediction Challenges

• Handling multiple labels and complex class structure
•

 

Commonly used functional classification schemes such as GO are 
hierarchically structured 

•

 

A protein can have multiple functional labels 
•

 

Traditional classification algorithms and evaluation methods tend to 
break down

• Integration of multiple types and sources of data
•

 

Integration can provide noise reduction, since the incorrectness of one 
data set may be reduced by combining it with other data sets

•

 

Data sets provide complementary information about protein function
• Effective pre-processing of biological data is needed for

•

 

Noise reduction 
•

 

Handling widely differing scales for different portions of the data 
•

 

Eliminating portions of the data irrelevant to the target class being 
studied
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