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Some terminology

Assay: A biological test, measurement or analysis to determine whether compounds
have the desired effect either in a living organism, outside an organism, or in an
artificial environment.

Hit compound: A biologically active compound that exceeds a certain activity threshold
in a given assay.

Lead compound: A compound that exhibits pharmacological properties which suggest
its value as a starting point for drug development.

Drug like compound: Sharing certain characteristics with other molecules that act as
drugs. The set of characteristics usually include size, shape solubility in water and
organic solvents. These characteristics relate to absorption, distribution, metabolism,
and excretion (ADME).

Chemical probe: A chemical compound with activity in the primary and any secondary
assays with adequate potency, selectivity, and aqueous solubility to be useful for in
vitro (cell-based) experimentation.
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Drug development process (the cartoon view)
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Coming up with a drug candidate
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Following up on that drug candidate
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The entire process is slow and costly

Figure 1: The Drug Discovery, Development, and Review Process
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Scurce: Pharmaceutical Research and Manufacturers of Amaernica

Accountability * Integrity * Reliability
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Hits and leads discovery
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Lead optimization

SAR & SPR models
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X-ray crystallography
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Synthesis
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Challenges in drug development

* Going after the wrong target

Failure to identify hit and/or lead compounds

® Limited chemical diversity of the screening library

® Non-druggable targets

Failure to optimize lead compounds

® Hard to diversify and/or synthesize a series of analogs

® Could not achieve the desired binding affinity/potency

® Did not achieve the desired ADME and toxicity properties
Low selectivity

High off-target activity

® Recent studies have suggested that this may not be such a bad thing
(polypharmacology)

® Failure to identify a high-throughput synthesis route
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Slow rate of drug discovery
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Figure 1 | FDA drug approvals. New molecular entities and biologic license applications approved
by the US FDA by year.
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The druggable genome

® Studies have pessimistically estimated the size of the “druggable
genome” to about 3,000 proteins.

HG 2002 2005 ophmishc 2005 conservaineg
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Chemical genetics (genomics)

Chemical Genetics (Genomics): The research field that is designed to discover and synthesize
protein-binding small organic molecules that can alter the function of all the proteins and use
them to study biological systems.

(National Institute of General Medical Sciences)

® Chemical genetics has emerged as a promising new approach for
studying biological systems.

® |t has a number of key advantages over existing approaches based
on molecular genetics:
® small molecules can work rapidly,
® their action is reversible,
® can modulate single functions of multi-function proteins,
® can disrupt protein-protein interactions, and

® if the target is pharmaceutical relevant, it can lead to the discovery of
new drugs.
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Where we are and where we will like to go

®* Recent studies have catalogued selective small molecule
modulators for about 1,500 protein targets.

® This represents a fraction of the estimated 100,000 protein functions
in human cells.

Analysis of FDA databases has found that small molecule
modulators exist for about 800 pharmaceutical relevant proteins.

@ This pails in comparison to the size of the druggable genome.

Finding selective small-molecule modulators (probes) is a
laborious and multi-step process whose success depends on a
number of different factors.

® Discovery and optimization process is similar in nature to that used
for drug development

® This needs to change in order to realize the promise of chemical
genetics
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Differences between drug and probe development

® Drug molecules are designed for in vivo use, whereas probe
compounds are designed for in vitro use

® Reduces the ADME-type properties that the probe compounds must
satisfy
® Probe compounds must be selective with limited (ideally none)
off-target activities

@ Drug compounds can have off-target activities as long as they do not
lead to undesirable side effects (e.g., toxicity)
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Challenges in probe development

® Finding hits for novel protein targets
® Existing chemical libraries are biased/optimized for drug discovery

® They are designed to cover only a small number of protein families
® Pharmaceutically relevant targets (druggable & therapeutically relevant)

® Little is known as to what compounds will bind to proteins outside
these sets of targets

® Lack of 3D structural information for most of the proteins
® Limits the set of methods that can be used to optimize leads

Need for selectivity

Analysis of phenotypic/cell-based assays to identify the targets of
small molecules

® This approach represents a ligand-focused target discovery (target
fishing)
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Data sources

® Chemical compound libraries

¢ Several millions of compounds (PubChem contains ~19M compounds)

® Virtual libraries can be easily generated that have several million of
compounds

® Screening results

® High-throughput screening assays, each containing initial screening results
for 20K-200K compounds at a single concentration

Confirmatory assays usually involving less than a few thousand compounds

® Dose-response assays for relatively small number of compounds
(< 500) at different levels of concentrations

® High-content screening assays providing spatial and quantitative
information (via microscope images) of the cell’s phenotype

® Target-ligand affinity information extracted from publications
® Crystallographic & NMR information from in vitro experiments
@ High-throughput synthesis reactions
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Analysis requirements & challenges

Methods capable of analyzing the topological and/or geometric nature of the
compounds in order to build accurate models to relate the biological activity of
a compound to its own structure

® Structure-activity-relationship (SAR) models

Effective in silico docking-based virtual screening methods

@ Accurate scoring functions and docking protocols that allow for ligand and target
flexibility and can account for genetic variations of the protein targets

Methods to predict the synthetic accessibility of compounds and identify

efficient synthesis paths

Computational methods that can deal with noisy, sparse, and incomplete data

@ Screening results are inherently noisy and only available for a tiny fraction of the
existing compounds
Negative information is often not available and/or non-reliable whereas positive
information is available for a small number of compounds

Methods to analyze the diversity of existing libraries and their relation to the

areas of the chemical space that are of relevance for drug and probe

compounds

Methods to analyze high-content screening assays to identify the protein
targets response for phenotypic changes being induced by small molecules
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Ultimate goal:

In silico bridging of chemical and biological spaces

Novel methods are needed to establish the connections between
proteins (biological space) and their ligands (chemical space) in
order to accelerate drug/probe development

® Improve the accuracy of structure-activity-relationship models
® Compound selection for screening library design

® De novo ligand design guided by these connections

Ultimate goal:

® Given a novel protein target, construct a focused screening library
containing either existing or easy to synthesize de novo ligands that
contains a potent and selective ligand

® An assay will only be used to identify/validate the best ligand and
that’s it!

Underlying Hypothesis: Proteins that have similar binding sites should have ligands that are
similar and similar ligands should bind to proteins with similar binding sites.
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MATHEMATICAL
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Where are the graphs/networks?

® Molecular graphs

® The function of a compound is largely determined by its structure

@ Even though different approaches have been developed for capturing/modeling
the structure of a compound, the most effective approaches focus on the
compound’s molecular graph ,
® Atoms become vertices and bonds become edges Revatie

® Thus, from a data representation and computational
stand-point, a library of compounds is nothing more
than a set of (small) graphs

Compound co-activity network
® Formed by connecting the compounds that share targets

Target co-ligand network
@ Formed by connecting via an edge the targets that share ligands

Target-ligand network
® This is a bipartite network formed by viewing the target-ligand activity matrix in
the form of a bipartite graphs
® The targets and the ligands from the two set of vertices and for each target-ligand pair
there is an edge between the corresponding target and ligand

Wednesday, June 04, 2008 Mathematics for Analysis of Petascale Data



UNIVERSITY OF MINNESOTA, DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

How molecular graphs are used

® Retrieve compounds that are similar to a query compound

® Query is performed by comparing the structure of a pair of molecules
and assigning a quantitative score that captures their degree of
similarity

Build SAR models based on their structure

® Based on the presence/absence of certain chemical fragments
(substructures/subgraphs)

@ Based on kernels functions defined on their graph’s structure
Coming up with new compounds by combining a set of
compounds (usually two) or by breaking it apart along an edge

® Often synthesis and fragmentation is driven by reactions executed
forward or backwards
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Molecular graphs: Mathematical/Computational challenges

® Determining the similarity between small graphs
® Maximal common subgraph

® This is the traditional mathematical approach for comparing two graphs;
however, its use for molecular graphs is somewhat limited

® |t has been found to be too rigid

% This can change if better methods are developed for determining
approximate common subgraphs (e.g., graph edit distance)

@ Descriptors

® Each graph is represented as a set/vector of substructure descriptors and two
graphs are compared using set/vector similarity measures

® Enables the easy identification of the fragments that are associated with
activity
® |tis the most widely used approach
® Random-walk based similarity methods
* Eg, Sm(Cy,Go) = Y pi(vn)pe(va)simp (I(vn), [ (va)),

(v1,02)EVI X V>

where [(v1) is a sequence of vertex labels of a random path starting at node vy, simy, is a
similarity function defined on the label sequences, and p(v1) is the probability of starting the
random walk at vertex vy.
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Challenges with descriptors

® What should be used as descriptors?

® Bounded-length paths, atom-centered bounded-length rings,
bounded-size trees, cycles, frequent subgraphs, bounded-size
subgraphs, etc.

AF TF PF
GF: Graph fragments,
GF - > > AF: Acyclic fragments,
TF: Tree fragments,
AF > > PF: Path fragments
TF

Retrieval and
Classification, Knowledge and Information Systems (KAIS) Journal, Vol 14, No. 3, pp. 347—375, 2008.

® How do you encode domain information?

® Atom types, bond types, ring structure,
scaffolds, synthesis reactions, etc.

® How to find them efficiently?

® Fragment-based descriptors require the efficient determination of
the fragments and their number of distinct embeddings in the graphs.
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Efficient discovery of graph fragments

* More challenging than the most commonly solved problem of
frequent (closed/maximal) subgraph mining in sets of graphs.

® There should be no (or extremely small) frequency cut-off

® There is a need to determine the number of embeddings of each
fragment

» These requirements lead to a problem formulation that is more
similar to that of finding graph-based patterns in a single large
graph (or network), as this problem also requires the enumeration
of all of the embeddings

® This is not a very-well studied problem and there is a need to develop
better methods

Also, any improvements here will have broader applications
related to graph searching and retrieval as fragments have been
shown to provide a powerful indexing scheme

® j.e., inverted indexes for graphs
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An example of potential gains and future directions

QUCIANR AN - oavistics for MLSMR.

Fragment Size  t[sec] #f

4 255 299
5 481 12494
[ 1051 48917

MLSMR library contained 224,278 compounds; t
is the running time in seconds on a 64-bit Intel
Xeon 2.33GHz; #f is the total number of frag-
ments that occur in more than one compound.

@ Future improvements?

AFGEN 2.0 (GF statistics for MLSMR.

Fragment Size t[sec] #f

4 56 3510
5 66 15147
6 a4 61326
i 120 233928

MLSMR library contained 245 870 compounds; ¢ is
the running time in seconds on a G4-bit Intel Xeon
2.33GHz; #f is the total number of fragments that
occur in more than one compound.

http://glaros.dtc.umn.edu/gkhome/afgen/overview

® Smarter algorithms for traversing and putting together the fragments
® E.g., construct/generate/grow the fragments by using paths instead of edges

® |ncorporate a deeper graph-theoretic understanding of the problem

@ E.g., use of orbits of graphs to take advantage of symmetry in order to reduce
the fragments that need to be explicitly enumerated
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Compound co-activity network
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Uses of the compound co-activity network

As a planning tool to generate a diverse screening library that covers the
currently covered portions of the chemical space

® E.g., something like a maximal independent set...

It can help identify the areas of the sparsely covered areas of the
chemical space and thus focus future library developed towards poorly
covered areas

@ E.g., low-degree compounds can form the seeds for such rational chemical
space expansion

|dentify frequent hitters and eliminate them from consideration

ldentify compounds with different scaffolds that can potentially share
the same biological activity (scaffold hopping). These compounds can
potentially be better for optimizing ADME+tox properties

® E.g.,, compounds connected via multiple short paths, manifold distance, etc.
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Challenges associated with the co-activity network

® Current network is extremely sparse and incomplete

® |ncompleteness is due to the limited amount of available experimental screening
data

® This unfortunately will not change as we move forward
® Methods need to be developed that can populate the network
® This is a huge missing edge prediction problem
Possible solution approaches:

@ Insilico screening via supervised learning methods or molecular docking for each of
the current targets
® Computationally demanding and limited to only existing targets

e Development of robust methods to determine the statistical significance of molecular
graph similarity scores (like existing approaches for protein sequence comparisons)

® This will require the development of new methods that account for how the similarity is
computed, how compounds are created, and potentially for they 3D conformations

® There is very little work in this area, but it will have wide applications well beyond drug and
probe discovery

® Methods to analyze these hybrid networks (real+predicted) that take into
account the errors associated with the predictions

@ Relation to graph-based semi-supervised learning methods
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Co-activity networks — Benefits from even simple-minded

solutions

Figure 1: Performance of indirect similarity measures.
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The target co-ligand network
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Use of the target co-ligand network

The well-connected clusters of the network indicate sets of targets
whose binding sites share key characteristics that are relevant to ligand
binding

2 Create screening libraries focused to a particular target by utilizing the
ligands of other targets in the network

® This class of methods are
referred to as chemogenomics

Improve the quality of SAR models by using ligands of related targets

® E.g., there is a high probability that the unscreened ligands of related targets
will also be ligands for the target in question

Analyze how ligand-binding related connections relate to other
networks involving the proteins

® evolutionary, structural, functional, etc.
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Challenges associated with target co-ligand networks

* |dentifying which connections are reliable for information transfer
® Intrinsic properties of the proteins
® E.g., sequence, structure, function, etc.

® Properties of the actual shared ligands
® E.g., molecular structure, fragments, number, etc.

* Determining the best way to utilize this information, especially
when are used to improve the quality of SAR models
® This can be thought of as an instance of semi-supervised learning in

which the ligands of the related targets become the pool of the
unlabeled instances

The reliability determination problem can be viewed as an
instance of learning which parts of the graph should be used to
semi-supervised learning
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Examples of some benefits that can be obtained by utilizing
the target co-ligand network

Improving SAR models

GPCR’s receptors ——————s
M hikchg(3) - hesAll ——3
E3AR - hesAll =

Targel distibuton

lddeg o

25 TH 125 1WE 225 IS MH WS 425 475 525 GTS
Percentage performance improvement’

Wednesday, June 04, 2008 Mathematics for Analysis of Petascale Data (MAPD



UNIVERSITY OF MINNESOTA, DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

The target-ligand network
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Uses and challenges

® Uses
® |dentify new ligands for targets and new targets for ligands

® |dentify relations between the chemical and biological spaces in order
to build target-hopping models so that given a novel protein target
be able to

® Predict which compound will bind to it
* Use it to guide synthesis of de novo ligands

® Challenges

@ Analyzing the network in order to build the target hopping models

® Edge-prediction problem that needs to take into account

® The structure of compounds and the structure of the proteins’ binding sites
@ |n many cases information about the protein will be computationally determined

® The model needs to generalize to novel proteins targets
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Summary of mathematical challenges

Methods to find patterns in graphs and identify their complete set
of embeddings

Methods to determine the similarity between graphs and assess

their statistical significance

® Both global (are the graphs similar) and local (is one graph contained
in the other) type of similarities

Methods to predict edges (relations) in the networks that take

into account the network structure itself and intrinsic information

associated with the nodes

Methods to find well-connected sub-networks that are tolerant to
errors associated with the predicted nature of the links

Methods to integrate information from different networks
overlaid on the same set of nodes
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THANK YOU!
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BACKUP SLIDES
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Problem Definition

Given one or more chemical compounds that have been experimentally
determined to possess a desired biological activity, the goal is to find other
compounds in a database that have similar bioactivity.

® Depending on the underlying hit/lead discovery process, there
are two virtual screening approaches.

® (Classification (supervised learning problem)

@ Retrieval (unsupervised learning problem)
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Failure rates
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Where are the graphs/networks?

® Molecular graphs

® The function of a compound is largely determined by its structure

@ Even though different approaches have been developed for capturing/modeling
the structure of a compound, the most effective approaches focus on the
compound’s molecular graph ,
® Atoms become vertices and bonds become edges Revatie

® Thus, from a data representation and computational
stand-point, a library of compounds is nothing more
than a set of (small) graphs

Compound co-activity network
® Formed by connecting the compounds that share targets

Target co-ligand network
@ Formed by connecting via an edge the targets that share ligands

Target-ligand network
® This is a bipartite network formed by viewing the target-ligand activity matrix in
the form of a bipartite graphs
® The targets and the ligands from the two set of vertices and for each target-ligand pair
there is an edge between the corresponding target and ligand
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