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Is science in 2008 
different from science in 1908?

Instruments

[Science, Szalay & J. Gray, 2001]



Is science in 2008 
different from science in 1908?

1990 COBE             1,000
2000 Boomerang 10,000
2002 CBI 50,000
2003 WMAP      1 Million
2008 Planck    10 Million

Data: CMB Maps

Data: Local Redshift Surveys
1986 CfA 3,500
1996 LCRS    23,000
2003 2dF     250,000
2005 SDSS 800,000

Data: Angular Surveys
1970 Lick        1M
1990 APM       2M
2005 SDSS  200M
2008 LSST       2B

Instruments
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Sloan Digital Sky Survey 
(SDSS)



Size matters!   Now possible:
• low noise: subtle patterns
• global properties and patterns
• rare objects and patterns
• more info: 3d, deeper/earlier, bands
• in parallel: more accurate simulations
• 2008: LSST – time-varying phenomena

1 billion objects
144 dimensions

(~250M galaxies in 5 colors, 
~1M 2000-D spectra)



Happening everywhere!
Molecular biologymicroarray chips

Earth sciencessatellite topography

Neurosciencefunctional MRI

microprocessor

nuclear mag. resonance Drug discovery

Physical simulation

Internet
fiber optics



1. How did galaxies evolve?
2. What was the early universe like?
3. Does dark energy exist?
4. Is our model (GR+inflation) right?

Astrophysicist

Machine learning/
statistics guy
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G. Richards, Princeton Physics
A. Szalay, Johns Hopkins Physics
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• Kernel density estimator 
• n-point spatial statistics
• Nonparametric Bayes classifier
• Support vector machine
• Nearest-neighbor statistics
• Gaussian process regression
• Hierarchical clustering
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But I have 1 million points
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Statistical (modeling, validation):
• Best performance with fewest assumptions

Computational:
• Large N (#data), D (#features)

Statistics/learning challenges
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Statistical (modeling, validation):
• Best performance with fewest assumptions

Computational:
• Large N (#data), D (#features), M (#models)

Statistics/learning challenges

D

N

M

Reduce? Simplify?  Poor modeling

Avoid hard problems?  Poor funding



My motivating datasets
• 1993-1999: POSS-II
• 1999-2008: SDSS
• Coming: Pan-STARRS, LSST
• Also: 

– Millennium simulation data
– Large Hadron Collider data
– network traffic (email) data
– Inbio ecology data



What I like to think about…
• The statistical problems and 

methods needed for answering 
scientific questions

• The computational problems 
and methods involved in scaling 
them up to big datasets

• MLPACK: software for large- 
scale machine learning (later in 
2008)



OUTLINE
1. What are some of the 

statistical problems and 
methods to consider?

2. What are some of the 
computational problems 
and methods to consider?

3. What might the software 
which implements all this 
look like?



OUTLINE
1. What are some of the 

statistical problems and 
methods to consider?

2. What are some of the 
computational problems 
and methods to consider?

3. What might the software 
which implements all this 
look like?



10 data analysis problems, and 
scalable tools we’d like for them
• Querying (e.g. characterizing a 

region of space, defining a trigger): 
nearest-neighbor, spherical range- 
search, orthogonal range-search

• Density estimation (e.g. comparing 
galaxy types): kernel density 
estimation, mixture of Gaussians

• Regression (e.g. optical redshifts): 
linear regression, kernel regression, 
Gaussian process regression



10 data analysis problems, and 
scalable tools we’d like for them
• Classification (e.g. quasar detection, 

star-galaxy separation): nearest-neighbor 
classifier, nonparametric Bayes classifier, 
support vector machine

• Dimension reduction (e.g. galaxy 
characterization): principal component 
analysis, kernel PCA, maximum variance 
unfolding

• Outlier detection (e.g. new object types, 
data cleaning): by robust L2 estimation, by 
density estimation, by dimension reduction



10 data analysis problems, and 
scalable tools we’d like for them
• Clustering (e.g. automatic Hubble 

sequence): k-means, hierarchical 
clustering (“friends-of-friends”), by 
dimension reduction

• Time series analysis (e.g. asteroid 
tracking, variable objects): Kalman filter, 
hidden Markov model, trajectory tracking

• 2-sample testing (e.g. cosmological 
validation): n-point correlation

• Cross-match (e.g. multiple databases): 
bipartite matching



OUTLINE
1. What are some of the 

statistical problems and 
methods to consider?

2. What are some of the 
computational problems 
and methods to consider?

3. What might the software 
which implements all this 
look like?



Core computational problems

What are the basic mathematical 
operations, or bottleneck 
subroutines, can we focus on 
developing fast algorithms for?



Core computational problems

• Aggregations
• Generalized N-body problems
• Graphical model inference
• Linear algebra
• Optimization



Core computational problems 
Aggregations, GNPs, graphical models, linear algebra, optimization

• Querying: nearest-neighbor, sph range-search, ortho range-search
• Density estimation: kernel density estimation, mixture of 

Gaussians
• Regression: linear regression, kernel regression, Gaussian process 

regression
• Classification: nearest-neighbor classifier, nonparametric Bayes 

classifier, support vector machine
• Dimension reduction: principal component analysis, kernel PCA, 

maximum variance unfolding
• Outlier detection: by robust L2 estimation, by density estimation, by 

dimension reduction
• Clustering: k-means, hierarchical clustering (“friends-of-friends”), by 

dimension reduction
• Time series analysis: Kalman filter, hidden Markov model, 

trajectory tracking
• 2-sample testing: n-point correlation
• Cross-match: bipartite matching



Aggregations

• How it appears: nearest-neighbor, 
sph range-search, ortho range-search

• Common methods: locality sensitive 
hashing, kd-trees, metric trees, disk- 
based trees

• Mathematical challenges: high 
dimensions, provable runtime

• Mathematical topics: computational 
geometry, randomized algorithms



Aggregations

• Interesting method: Cover-trees 
[Beygelzimer et al 2004]
– Provable runtime
– Consistently good performance, even in 

higher dimensions
• Interesting method: Learning trees 

[Cayton et al 2007]
– Learning data-optimal data structures
– Improves performance over kd-trees



Generalized N-body Problems
• How it appears: kernel density estimation, 

mixture of Gaussians, kernel regression, 
Gaussian process regression, nearest-neighbor 
classifier, nonparametric Bayes classifier, 
support vector machine, kernel PCA, 
hierarchical clustering, trajectory tracking, n- 
point correlation  

• Common methods: FFT, Fast Gauss 
Transform, Well-Separated Pair Decomposition

• Mathematical challenges: high dimensions, 
strong error guarantee

• Mathematical topics: approximation theory, 
computational physics



Generalized N-body Problems
• Interesting method: Generalized Fast 

Multipole Method, aka multi-tree methods 
[Gray et al. 2000-2008]
– Fastest practical algorithms for most of the 

problems to which it has been applied
– Hard relative error bounds
– Automatic parallelization (THOR: Tree-based 

Higher-Order Reduce)
– Big astrophysics results (dark energy 

evidence Science 2003, cosmic magnification 
verification Nature 2005, 1M quasars 2008)



Graphical model inference
• How it appears: hidden Markov 

models, bipartite matching  
• Common methods: belief 

propagation, expectation propagation
• Mathematical challenges: large 

cliques, upper and lower bounds, 
graphs with loops

• Mathematical topics: variational 
methods, statistical physics, turbo 
codes



Graphical model inference

• Interesting method: Survey 
propagation [Mezard et al 2002]
–Good results for combinatorial 

optimization
–Based on statistical physics ideas



Linear algebra

• How it appears: linear regression, 
Gaussian process regression, PCA, 
kernel PCA, Kalman filter 

• Common methods: QR, Krylov
• Mathematical challenges: numerical 

stability, sparsity preservation
• Mathematical topics: linear algebra



Linear algebra

• Interesting method: Monte Carlo 
SVD [Frieze, Drineas, et al. 1998- 
2008]
–Sample either columns or rows, 

from squared length distribution
–Relative error bounds



Optimization
• How it appears: support vector 

machine, maximum variance 
unfolding, robust L2 estimation 

• Common methods: interior point, 
Newton’s method

• Mathematical challenges: large 
number of variables / constraints

• Mathematical topics: optimization 
theory, linear algebra, convex 
analysis



Optimization

• Interesting method: Sequential 
minimization optimization (SMO) 
[Platt 1999]
–Much more efficient than interior- 

point, for SVM QPs
• Interesting method: Stochastic 

quasi-Newton [Schraudolf 2007]
–Does not require scan of entire data



Interaction between 
statistics and computation

• Explicitly trade off between 
statistical accuracy and runtime

• Monte Carlo: a statistical idea for 
computational purposes

• Active learning, aka design of 
experiments: choose the 
important points



OUTLINE
1. What are some of the 

statistical problems and 
methods to consider?

2. What are some of the 
computational problems 
and methods to consider?

3. What might the software 
which implements all this 
look like?



Keep in mind the machine

• Memory hierarchy: cache, RAM, 
out-of-core

• Dataset bigger than one machine: 
parallel/distributed

• Everything is becoming multicore



Keep in mind the overall system

• Databases can be more useful 
than ASCII files

• Workflows can be more useful 
than brittle perl scripts

• Visual analytics connects 
visualization/HCI with data 
analysis



Keep in mind the software 
complexity

• Automatic code generation (e.g. 
MapReduce)

• Automatic tuning (e.g. OSKI)
• Automatic algorithm derivation 

(e.g. AutoBayes, SPIRAL)



The end

Always looking for hard problems!

Alexander Gray 
agray@cc.gatech.edu
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