Extreme Climate Change:
Scaling Laws and Scale Invariance

Bill Collins
UC Berkeley and LBL
Berkeley, California




]

Topics

A

KELEY LAD

 Application of climate models for
mean climate change

Directions for model development

Application of climate models for
climate extremes

Changes with resolution in
mean and extreme rainfall

Implications for future work



]

FEEFEre] |

What is a climate model?

« Synthesis of climate theory & data
« Tool for predicting the future

» Tool for understanding the past

* Numerical “parallel Earth”

NERSC’s Supercomputer Franklin



Climate Simulations for IPCC Assessments "'

IPCC Emissions Scenarios

GIc

| Carbon Dioxide

5y | Seenaroe

—

Climate Change Simulations

CCSM3 IPCC future scenarios [Oct 15 2004]
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Projection of regional temperatures '
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Glabal Mean Surface Temperature Change (°C)

IPCC AR4, 2007 * Roughly 2/3 of warming by 2030 is from historical changes.

« Warming by 2030 exceeds 20t C natural variability by >2x.




Climate processes and components

Changes in the Atmosphera: Changes in the
Composition, Circulation Hydrological Cycle
Changes in
Solar Imputs
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Atmosphere T
Ly b f." /
' 4
N, Oy Ar Volcanic Activity e
H,0,C0,,CH,N,0, O, etc. Py ' jf £ !
Aerosols r f.—f \'\ Atmosphere-Biosphere
Atmosphere- / Interaction
lee Precipitation
Interaction Evaporation
Tarre_lst_rial
Heat  Wind gy pieipiation
Exchanage Stress
i

Hyd i
_

Ice-Ocean Coupli Changes in the Crycsphere:
b Ei”f{;"ﬁ'}f{ﬁ“ Snow, Frozen Ground, Sea Ice, lce Sheets, Glaciers

Changes in the Ocean:
Circulation, Sea Level, Biogeochemistry

Changes infon the Land Surface:
: QOrography, Land Use, Vegetation, Ecosystems

IPCC AR4, 2007
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Resolution of climate models r—\\ll

BCRECLEY LAD

IPCC AR4, 2007

» Resolution has increased by a factor of 5.
 Are the model(s) converging with increased resolution?
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* The resolution of Community Model has increased by a factor of ~6.
 The fidelity of its simulated winds has improved by a factor of ~20.




The Community Climate System Model .2 :
CCSM3

éﬁgg Coupler
1.40 X 10 levels ( C"f 6)
Ocean
(POP 1.4.3)

1.0° X 40 levels

http://www.ccsm.ucar.edu

Collins et al, 2006
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The Modeling Community

NCAR

Coupler
CPL 6
Ocean
(POP 1)

Current Users:
* Faculty: 29
 Students: 34
* Researchers: 69

Publications:
* NCAR: 87
* Universities: 94
* Labs/Foreign:

Downloads of
CCSM3:

Total:

170
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Computational requirements of CCSMa3:
« ~1 quadrillion operations/simulated year

» Rate of simulation: 3.5 sim. years/day

* Output: 10 GB/simulated year

» Data volume for IPCC: ~100 TB

» Development effort: ~1 person-century



Distribution of CCSM3 Simulations

Central site: Earth System Grid

—DOE project to integrate major centers
for supercomputing and analysis

« CCSM3 OUtpUt avallable: B
—Current contents: All code, input, and output
—Model simulations: 10,000 years of ensembles
—Data volume: 110 TB

« Access point: https://www.earthsystemagrid.orqg/
* Global access: PCMDI at LLNL



https://www.earthsystemgrid.org/
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Climate impacts: precipitation intensity '
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IPCC AR4, 2007

* Precipitation intensity is annual rainfall divided by the number of wet days.

* Precipitation intensity increases significantly at higher latitudes by 2100.
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Climate extremes: 2003 European heat wave eree)
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| August 2003 temperature anomalies Deaths in 2003 Heat Wave
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Key vulnerabilities of industry, settlements and
society are most often related to:

« climate phenomena that exceed thresholds
for adaptation, related to the rate and
magnitude of climate change,
particularly extreme weather events and/or
abrupt climate change

« limited access to resources (financial,
human, institutional) to cope, rooted in
issues of development context

Temperature Anomaly ('C)

-5 o +5




-

A
Freeeerr |||"

CRECLEY LAD I

An “extreme” Is an usual climate state

Monthly average August 2003 temperatures
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There is an increased risk of more
frequent and longer-lasting heat waves.

Growing season length has been
projected to increase as climate warms.

Climate models project increased summer
dryness and winter wetness

in most parts of the northern middle and
high latitudes.

Precipitation will tend to be concentrated
into more intense events,

with longer periods of little precipitation in
between.
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Alexander et al, 2006



Climate extreme indices for North America

CMIP3 multi-model
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Maximum number of dry days %
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Precipitation fraction > 95th percentile
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@ Precipitation extremes and thermodynamics '
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* Increases in most extreme precipitation are set by higher saturation humidities.
 Saturation humidities are set by the Clausius-Clapeyron thermodynamic law.
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Low confidence in impact on rainfall N
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IPCC AR4, 2007




Predictive confidence vs. resolution

A) RELATIVE AGREEMENT

B) INT. VARIAB. / ALL DIFF.
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» Consistency among simulated rainfall decreases at smaller scales.
* Internal variability in simulated rainfall increases at smaller scales.
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Precipitation extremes vs. resolution '
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Williamson, 2007

* Do the extreme rainfall rates converge with increasing resolution?
* NO? The rates do not converge for higher spatio-temporal resolution.




Changes in cloud amount vs. resolution
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Do cloud properties and amounts converge with increasing resolution?
* NO? Cloud amounts show no sign of convergence (in at least 1 model).
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Future research in climate extremes

What factors govern higher
frequency of dry spells?

What factors govern
concurrence of extremes, e.g.
dry spells and heat waves?

Are projected extremes robust?
— Errors in model mean state
— Errors in model physics
— Resolution convergence

GCMs were designed for means,
not extremes.

We need GCMs designed for
resolution independence and
convergence at small scales.
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Conclusions

Climate change prediction will increasingly focus on
regional effects and unusual weather.

The focus on extreme climate change will require
identification of highly intermittent phenomena.

These predictions require models that converge with
Increasing spatial and temporal resolution.

Climate models need physics that obeys the
scale invariance of the real atmosphere.
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