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Data Doubles Every Year

Computing power doubles every 18
months (Moore’s Law) ...
e That's 100x in 10 years
I/0 bandwidth increases ~10% / year
e That's <3x in 10 years.

Moore’s Law

Data doubles every year ... Human cognitive capacity
e That’s 1000x in 10 years, and Py
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volumes), we will fall farther and farther
behind in our ability to analyze,
assimilate, and extract knowledge from
our data collections ... unless we develop
and apply exponentially more powerful
algorithms and methods.




Large Scientific Database Projects

Drinking from a FIREHOSE

H Scientific Data Flood “ . A%
= Scientist




Astronomy Is a Discovery-driven Science
e Discoveries are enabled by:
— New questions
— New ideas
— New models
— New theory
— And most importantly ... New data!

Discoveries have shown that the astronomical zoo is rich and diverse ...

‘Black Holes‘ ‘Quasars‘ ‘Supernovae‘ ‘Pulsars‘

‘ Blazars‘ ‘Tidal Streams‘ ‘ Colliding Galaxies‘ ‘ I\/Iagnetars‘

‘ Gamma-ray bursts‘ ‘ S Dwarfs‘ ‘ Gravitational Lenses ‘

‘ EXxo-planets ‘ ‘ Incoming Killer Asteroid ‘

‘ Serendipity !! ‘




Astronomy Is a Discovery-driven Science
e Discoveries are enabled by:
— New questions
— New ideas
— New models
— New theory
— And most importantly ... New data!

e Discoveries lead to:
— New questions
— New ideas
— New models
— New theory
— And most importantly ... More new datal!
« We need increasingly efficient mining & analysis algorithms



Astronomers have been doing
Data Mining for centuries

il

“The data are mine, and
you can’t have them!”

e Seriously ...

« Astronomers love to classify things ...
(Supervised Learning. e.g., classification)

» Astronomers love to characterize things ...
(Unsupervised Learning. e.d., clustering)

e And we love to discover new things ...
(Semi-supervised Learning. e.g., outlier detection)



This sums it up ...

Data Mapping and a Search for Outliers

e Characterize the known N 2
(clustering) ;

e Assign the new
(classification)

e Discover the unknown
(outlier detection)
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Graphic from S. G. Djorgovski

* Benefits of very large data sets within a scientific domain:
* best statistical analysis of “typical” events
e automated search for “rare” events



Astronomy data volumes are

growing and growing astronomically
|

> afew terabytes "yesterday”
(10,000 CDROMS)

» tens of terabytes "today”
(100,000 CDROMS) Valune

of LYata
» 100’s of petabytes "tomorrow"

(within 10-20 years)
(1,000,000,000 CDROMS)
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From Data-Driven to Data-Intensive
e Astronomy has always been a data-driven science

e |tis now a data-intensive science: Astroinformatics

— And it will become even more data-intensive In the
coming decade(s)

e« Some key data-driven questions for astronomers:

— What is it? \
. = . ,? L 3
Where IS It” | Q@

— What causes that behavior? \66
— When did it form? O@
_ How did it form? \(\(\

— Why did it do that?
— Who will let me use their telescope to get more data???



Science Is Knowledge Work

Data =» Information = Knowledge

 Knowledge Discovery is the central theme of
science.

 Knowledge Discovery in Databases (KDD) is
the killer app for large scientific databases.

e Therefore, KDD (i.e., Data Mining) Is an
essential tool, since “big-data” science Is
here to stay (at petabytes and beyond).

 Example ...



Astronomy Example

» -

(a) Imaging data (ones & zeroes) (b) Spectral data
_ (ones & zeroes)
Information (catalogs / databases):

— Measure brightness of galaxies from image (e.g., 14.2 or 21.7)
— Measure redshift of galaxies from spectrum (e.g., 0.0167 or 0.346)

Knowledge: -

Hubble Diagram =& ) | |
Redshift-Brightness ; i - i

Correlation = .

Doppler shift = Distance " e

D ’
-

Velecity (in

Understanding: the Universe is expanding!!




Hubble’s discovery

e For his discovery of that
special correlation and for his
remarkable insight regarding

its meaning ... The Universe

IS Expanding ... we honor
Edwin Hubble as one of the
great observers (collectors
and analyzers of astronomical
data) of the 20" century,
and... we named a certain
famous telescope after him!

« But what about all of the other
correlations discovered and
published every single day!?

(1889-1953)



Statistics, Information Theory, and
Data Mining

We can mine our data for interesting correlations

We can apply fabulous algorithms to discover these
correlations

We can do statistical tests on the significance of
these correlations

We can apply information theory to measure the
iInformation content (negative entropy) of the
discovered patterns

But how do we know that the patterns and
correlations are interesting, useful, scientifically
meaningful, and a true Hubble-level discovery??



Basic Astronomical Knowledge Problems — 1

 The distance problem:
— Finding the distance to things on the “2-D” sky
— We see everything in 2-D projection
— But the Universe is deep in both space and time

— We need distance to understand the physics and
astrophysics of objects in space and time:

o Space: Where are they? What are their neighbors?
e Time: When did they form? How long do they live?
— What observational parameters correlate with distance?

— Are there combinations (linear or non-linear functions) of
observed parameters that correlate more strongly with
distance (i.e., what is the most accurate estimator)?

— What is the most unbiased estimator for distance?



Basic Astronomical Knowledge Problems — 2

e The clustering problem:
— Finding clusters of objects within a data set

— What is the significance of the clusters (statistically
and scientifically)?

— What is the optimal algorithm for finding friends-of-
friends or nearest neighbors?
e N is >10%° so what is the most efficient way to sort?
— Are there pair-wise (2-point) or higher-order (N-way)
correlations?

* N is >10%° so what is the most efficient way to do an
N-point correlation?

— algorithms that scale as N2logN won't get us there



Basic Astronomical Knowledge Problems — 3

e Qutlier detection: (unknown unknowns)

— Finding the objects and events that are outside the
bounds of our expectations (outside known clusters)

— These may be real scientific discoveries or garbage
— Quitlier detection is therefore useful for:
» Novelty Discovery — is my Nobel prize waiting?
 Anomaly Detection — Is the detector system working?
o Data Quality Assurance — Is the data pipeline working?

— How does one optimally find outliers in 103-D parameter
space? or in interesting subspaces (in lower
dimensions)?

— How do we measure their “interestingness”?



Basic Astronomical Knowledge Problems — 4

e The dimension reduction problem:

— Finding correlations and “fundamental planes” of parameters

— Number of attributes can be log R,

hundreds or thousands o1 st

 The Curse of High . A
Dimensionality ! 2 . qﬁ“
— Are there combinations | '{" '
(linear or non-linear 2 | VA
functions) of observational 108 70 o
parameters that correlate .

strongly with one another? 18!

— Are there eigenvectors or 9 |
condensed representations 10 -
(e.g., basis sets) that log L, 11
represent the full set of
properties?



Basic Astronomical Knowledge Problems — 5

e The cross-match problem:
— Matching objects in Catalog A to the corresponding
objects in Catalog B
e N is >10%° so what is the most efficient way to proceed?

— What is the likelihood function?

— How do we Include uncertainties in the scientific
measurements?

— How do include constraints from other information
sources?

— ODbjects are moving ... hundreds of them! ... Matching
multiple observations of the same object is a challenge:

e S0 what Is the optimal solution (all objects cross-matched,
maximizing the global likelihood in a massive data cube)?



Basic Astronomical Knowledge Problems — 6

 The classification problem:
— Classifying an object based upon observed attributes
(using rules learned from the historical training data)
e e.g., Star-Galaxy separation: very important problem !
— There are dozens (hundreds?) of classification

algorithms, so which algorithm is optimal when there are
hundreds to thousands of attributes?

« The class discovery and sub-class discovery problem:

— Are there new classes? Are there subclasses?
« How do you discover them?

* Which algorithms distinguish subclasses best? ...

— SVM (Support Vector Machines), PCA (Principle Component
Analysis), ICA (Independent Component Analysis), or ???



Basic Astronomical Knowledge Problems — 7

 The superposition / decomposition problem:

— Finding distinct clusters (Classes of Object) among
_objects that overlap in parameter space

- DPOSS 443

-0.5 0

=1

MTotd=MCored

i ail .
16 18 20 (@)

g magnitude

— What if there are 10'° objects that overlap in a 103-D
parameter space?

— What is the optimal way to separate and extract the
different unique classes of objects?

— How are constraints applied (as in operations
research or linear programming)?



Basic Astronomical Knowledge Problems — 8

 The optimization problem:

— Finding the optimal (best-fit, global maximum likelihood)
solution to complex multi-variate functions over very
high-dimensional spaces




Basic Astronomical Knowledge Problems — 8

e Example of the optimization problem:

— Finding the optimal simultaneous solution for 100,000,000
objects’ shapes across 2000 image planes, each of which
has 201x4096x4096 pixels...10%? floating-point operations!

— This illustrates an example for just one such object:

Actual Galaxy Shape

(same in all exposures)

B .
SR
® — .
| L
Individual Exposure PSFs Expected Galaxy Shape
(determined from stars) (used to compute likelihood)

References:
http://universe.ucdavis.edu/docs/MultiFit-ADASS.pdf

http://code.google.com/p/multifit/



http://universe.ucdavis.edu/docs/MultiFit-ADASS.pdf
http://code.google.com/p/multifit/

Example of Correlation, Classification, Clustering,

Cross-matching, and Subclass Discovery
Hubble found his correlation (and made his great discovery) by using
Cepheid Variable Stars (= Cepheids)

Cepheids are pulsating stars, varying in brightness — the class was
discovered (and these stars are subsequently classified as Cepheids)
because their brightness pulses in a very specific and predictable
pattern, different from other variable stars.

Cepheids show a period-luminosity (P-L) correlation: the bigger (and
brighter) the star, then the longer the period of pulsation

Typical Astrophysical Application: Get Distances to Galaxies ...

1. Find clusters of galaxies = at the same distance from us; they all have the same
conversion factor between their apparent brightness and true absolute brightness

2. Find the variable stars in the galaxies — cross-match them with prior observations
of the same stars — produce light curves, classify the variability (Cepheid or no?)

3. Apply P-L correlation to find absolute brightness = Distance !
4. But what if the correlation is really 2 correlations? (2 subclasses!)



The problem with the prior analysis:
there are 2 subclasses !

Cepheid Variables:
Cosmic Yardsticks
-- One Correlation
-- Two Classes!

Consequently,
Hubble got the
wrong answers
to the questions:
What are the
size and age

of the Universe?
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Sky Surveys: Partly the Solution and
partly the Problem

As our chemistry friends say ....

e If you are not part of the solution, then
you are part of the precipitate !



Sky Surveys: Solution & Challenge

To avoid biases caused by limited data, astronomers
now study the sky systematically: Sky Surveys

Surveys are used to measure and collect data from all
objects that are contained in large regions of the sky,
In a systematic, controlled, repeatable fashion.

These surveys include (... this Is just a subset):

— Digitized Palomar Sky Survey: 3 Terabytes

— 2MASS (2-Micron All-Sky Survey): 10 Terabytes

— GALEX (ultraviolet all-sky survey): 30 Terabytes

— Sloan Digital Sky Survey (1/4 of the sky): 40 Terabytes

— and this one is just starting: Pan-STARRS: 40 Petabytes!

Leading up to the big survey next decade:
— LSST (Large Synoptic Survey Telescope): 200 Petabytes!



LSST (Large Synoptic Survey Telescope)

http:.//www.lssto.org/

* Begin operations in 2015, with 3-Gigapixel camera
 One 6-Gigabyte image every 20 seconds
« 30 Terabytes every night for 10 years

o 200-Petabyte final image data archive anticipated —
all data are public!!!

 20-Petabyte final database catalog anticipated

 Real-Time Event Mining: 10,000-100,000 events
per night, every night, for 10 yrs

 Repeat images of the entire night sky every 3
nights: Celestial Cinematography



http://www.lssto.org/

Some Terminology

LSST = Large Synoptic Survey Telescope

HTN = Heterogeneous Telescopes Network:
worldwide network of telescopes, most of which
are robotic

Event = an astronomical event discovered by
any telescope anywhere

VOEvent = a VO XML messaging protocol for
alerting the world about the new event

VOEventNet = a network of VOEvent providers
and consumers (including HTN)




What is an Event?

Anything that changes (motion or brightness)
Variable stars of all kinds

Optical transients: e.g., extra-solar planets
Supernova

Gamma-ray burst

New comet

New asteroid

Incoming Killer Asteroid

Anything that goes bump in the night



Here Is one type of event ***

Optical Transient: here today,
gone tomorrow

e |tis a normal dwarf star, similar
to our sun, except ...

e itincreased in brightness by

300x in one night ... ———

 and then returned to normal.

***Courtesy: Caltech / Palomar Quest Survey



‘ VOEventNet: a Rapid-Response Telescope Grid ‘

GRB

Palomar-Quest
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Reference: http://voeventnet.caltech.edu/



http://voeventnet.caltech.edu/

MIPS model for HTN / VOeventNet

e MIPS =
— Measurement — Inference — Prediction — Steering

e HTN Is a Global Network of Sensors:

— Similar projects in NASA, Earth Science, DOE, NOAA, Homeland
Security, NSF DDDAS (voeventnet)

e Machine Learning enables “IP” part of MIPS:
— Autonomous (or semi-autonomous) Classification
— Intelligent Data Understanding
— Rule-based
— Model-based
— Neural Networks
— Markov Models
— Bayes Inference Engines



LSST =
Large
Synoptic
Survey
Telescope

http://www.lsst.org/

8.4-meter diameter
primary mirror =
10 square degrees!

(design, construction, and operations of telescope, observatory, and data system: NSF) (camera: DOE)


http://www.lsst.org/

LSST Key Science Drivers:

— Solar System Map (moving objects, NEOs, asteroids: census & tracking)
— Nature of Dark Energy (distant supernovae, weak lensing, cosmology)
— Optical transients (of all kinds, with alert notifications within 60 seconds)

— Galactic Structure (proper motions, stellar pop

ulations, star streams)

— wal »Antof

Region de
Chile Coquimbo

South America

2 is> § \L\aiejwa.[ﬁ
; IS // ok g (T -

_,—ff - .
2 Valparaiso, Sakads
l'f/- . u . )
- Santiago +panca

sta

gf,a summit of Cerro Pachon -

LSST In time and space:
—When? 2015-2025
— Where? Cerro Pachon, Chile

Model of
LSST Observatory




« LSST (Large Synoptic Survey Telescope):
— Ten-year time series imaging of the night sky — mapping the Universe !
— 100,000 events each night — anything that goes bump in the night !
— Cosmic Cinematography! The New Sky! @ http://www.lsst.org/

Observing Strategy: One pair of images every 40 seconds for each spot on the sky,
then continue across the sky continuously every night for 10 years (2015-2025), with
time domain sampling in log(time) intervals (to capture dynamic range of transients).




The LSST focal plane array

Camera Specs: (pending funding from the DOE)

201 CCDs @ 4096x4096 pixels each!

= 3 Gigapixels =6 GB per image, covering 10 sg.degrees
= ~3000 times the area of one Hubble Telescope image

LSST Data Challenges

Obtain one 6-GB sky image in 15 seconds
Process that image in 5 seconds

Obtain & process another co-located image for science validation
within 20° (= 15-second exposure + 5-second processing & slew)

Process the 100 million sources in each image pair, catalog all
sources, and generate worldwide alerts within 60 seconds (e.g.,
iIncoming killer asteroid)

Generate 100,000 alerts per night (VOEvent messages)
Obtain 2000 images per night g
Produce ~30 Terabytes per night
Move the data from South America to US daily
Repeat this every day for 10 years (2015-2025)
Provide rapid DB access to worldwide community:
— 100-200 Petabyte image archive
— 10-20 Petabyte database catalog i




The LSST will represent a
100,000-fold increase In
the VOEvent network
traffic and In the real-time
classification demands:
from data to knowledge!
from sensors to sense!



e —2 Terabytes per

The LSST Data Challenge
hour that must be " aw

# ' .
mined in real time. am "9 %}3
' - ff"-

More than 10 billion
objects will be
monitored for
important variations
in real time.

Knowledge extraction
in real time. i



The LSST Data Flood and Event Flood .

Drinking from a FIREHOSE

— Scientist




The LSST Petascale Challenges

(document Is available on-line)

LSST Petascale Data R&D Challenges

Achiaving stalal:ﬁlihr and reliability in LSST computing, storage, and network rescurces

The design of the DM system architecture is influenced by the technology. We expect to be available
to implement it, szarting with construction in 2011 - 2014 and continuing through he principal survey
period until 2024, This technology includes not only more powerful components, but complezaly new
systern  architectures and  potentially disruptive  technologies.  Most computing  throughput
mprovements will come not from increased CPU clock speeds as in the past, but from [arger
concentrazions of CPUs/cores and advanced computing architectures, Solid state technology may
change storage and the way we physically organize data. Hardware failures will be routine for the
LSST data system due to the large number of CPUs and disk drives, and reliance on high-speed
network connectivity, It is 2 chal’enge to ceate a system suficiently robust to these failures. We
need to predict the chamacteristics of CPU, network, storage hardware, and system software
sufficiently well that our design is appropriate. Further, we need to insulate the design as much as
possibie from underlying platform depencencies.

Reliabilit\r and performance issues for very large databases

LSET's mzin data products from the 20,000 square degree survey with 2000 images over ten years
per patch of sky are in the form of relational database tables, These tables are very large (50 billign
rows in the Object table, 800 billion rows in the Source table). They must be extensible, and
partiioned  and  indexed to  facilitate  high query performance, and  replicated  across
mulziple centers. Queries in the time domain (Scurce table) are likely to be of egual imporzance to
those in the spatial domain, Since these zwe traditionally cptimized by diferent datzbase
organizations, it is unclear what choices will perform best for LSST, Some intensive applications wil
nvolve n-point correlations of object attributes over zll objects. All these factors suggest that
database performance and reliability are risk areas.

Efficient automated data quality assessment

LEST will pm::luce large volumes of science data. The Data Management System (DMS) produces
derived products for scientific use both during observing (i.e. alerts and supperting image and source
dzta) and in daily and periodic reprocessing, The periodic reprocessing zlso results in relzased science
precucts, Analysis of the nightly data will a=o p’m-l::le |n5|g'1t into the heslth of the telescope/camera
system. An automated data quality assessment system must be developed, which efficiently searches
for cutliers in raw image data and unusual comrelations, This will imvolve aspects of machine leaming,

Operational contral and monitoring of the DMS

The DMS will b= 2 complesx distributed system with enormous dataflows that cperates 24/7.  The
DMS must be continuously monitored and contrelled to ansure the proper functioning of all computing
nardware, retwork conmections, and software, including the datz gquality of the scence
pipelines. Most of the monitoring tasks, and some of the contrel tasks, must be highly automated,
since the datz volumes preclude human examination of zll but 2 tiny fraction of the daza.

Achieving acceptably low False Transient Alert Rate

The science mission places high demand on the LSST's ability to rapidly and accurately detect and
classify varying and transient cbjects and to achieve a low false alarm rate.  Given the very b gl" data
volume produced by the LSST, the corresponding large number of detections in each image {up to
one million objects cetected per image), as well as the likelihood of entirely new classes of transients,
the LSST will not be zble o rely an traditionzl |sbor-intensive validation of detections, dassifications,
and alerts, To achizve the levels of accuracy required, new algorithms for detection and classication
miust be created, as well as innovative automates techniques for zlert filtering and validation.

Efficient detection and orbit determination for solar system objects
One of the LSST's science missions is to catalog the population of solar system objects, with 2
particulzr focus on potentially hazardous objects. Due to the depth of LSST's images, about 200 sclar

system objects per sguare degree will be detected near the ecliptic.  The LSST cadence on the sky is
not optimized solely for tracking solar system objects, o this dense swarm of objects must be relizbly
tracked through considerable gaps in time.  Algorithms must be developed that are robust to possible
miz-asseciations of detections at different epochs, and have acceprable computational sca zhility.

Achieving required photometric accuracy and precision

The LSST Science Requirements Document [SED) requires 2 level of photometric (intensity data)
accuracy and precision that may be difficult to achieve over the entire sky, particularly since the LSST
will be operating in 2 wide variety of seeing, sky brightness, and atmospheric estinction. Te
achisve this requires a thoroughly tested calibration procedure and assodated image processing
pipeline, In addition to the point-source requirements in the SRD, acourate photometric redshifts
require precision photometry for spatial’y extended cbjects.

Achieving required astrometric accuracy and precision

The LSST SRD requires a level of astrometric [position on the sky) accuracy and precision that is
difficulz to achieve over the entire sky. Achieving this astrometric performance requires 2 global,
whole-sxy, numesical sclution for zll per-frame astometric quantities that minimizes a cost
functicn.  Considerable work will be required to develop an efective cost function,

Achieving optimal ub{ect detection and shape measurement from stacks of images

Most objects that will be used for dark mater and energy science are too faint to be usefully
measured in a single LSST exposure. Instead, the LSST must detect and measure the properties of
chiects combining information from mu'tiple esposures of the same region of sky (image
stacks). Weak lensing galaxy shape measurements are particu'arly vulnerable to systematic effects
introduced by errors in the local point-spread function (PSF) determination, and thess systamatic
effects must E\e minimized. Exposures may vary significantly in their signal-te-noise and PSF quality,
and de n|"|g how to u::ntlr"all-‘r combine nformartion from all of them iz a research problem., See
£ for more information.

Need to develop a flexible approach that enables highly reliable classification of objects

Classification of astronomical objects is impestant and difficuls. A wide variety of information must be
assessed to reliably classify an object.  This includes spatial morphelogy in multiple colors
photometry in multiple colors, ime dependent behavior, and astrometric motion,  Further, the best
classifications will make use of surveys in other wavelength regimes and spectral information where
available, not solely information from the LSST. Experience from many surveys has shown that no
single algorithm can do a good job on all objects.  Rather, good algorithms tend to be specialist,
limized to particuar chiects classes, e.g. eclipsing binaries or supemovas. & successful system must
allow the development and incorporation of a wide variety of zlgerithms in 2 flexible manner.

Adaptive retuning of algorithm behavior

Severzl key zlgorithms employed in the LSST application pipelines are complex, containing many
data-dependent decisions and 2 large number of tuning paramesers that affect their behavior, As
chserving conditions charmge, an a?gc"i:hr" may begin to fail for 2 paticular cheice of tunin
parameters. LSST's extreme’y large data volume makes human intervention in such cases impractical,
but it is essential that the pipelines continue to fundion successfully.

Need to verify scientific usefulness of the LSST database schema and its implementation
against realistic queries

The LSST database schema must eficient'y support queries of data that have many relationships
betwesn multiple locations on the sky, epochs of observation, and filters employed. A high
performance implementation of this schema has many complexities that are addressed in the peta-
scale database architecture and anzalyss task. The wltmate test of how well these tasks have been
carried out is to perform science with the datzbaszs.  To do this ussfully, we are simulating LSST data,
using datz from cumrent surveys, and engaging the LSST Science Collzborations and scientific
COMMuUniTy.

http://universe.ucdavis.edu/docs/LSST petascale challenge.pdf



The LSST Data Challenges

MANAGING AND MINING THE LSST DATA SETS

Astronomy is undergoing an exciting revolution -- a revolution in the way we
probe the universe and the way we answer fundamental questions. New
technology enables this: novel detectors are opening new windows on the
universe, creating unprecedented volumes of high quality data, and computing
technology is keeping up with this explosion. In turn, this is driving a shift in the
way science is produced in astronomy and astrophysics: huge surveys of the sky
over wide wavelengths can be analyzed statistically for low-level correlations and
inverse problems may be solved by statistical inversion, producing new
understanding of the underlying physics.

This parallels progress in high energy physics. Decades ago, a handful of
photographs of events sufficed for ground-breaking discoveries. This gave way
to experiments in which the systematic measuring (scanning) of many bubble
chamber pictures allowed the measurement of statistical properties, such as
lifetimes. Current experiments extend the technique by recording all events
electronically and subjecting Petabyte data sets to rigorous statistical analysis.

A key ingredient in mining our astronomical science from such huge databases,
efficient algorithms for statistical analysis, has been under-emphasized in the
rush to utilize new technology and get the data products out to the science
community. Past data sets in astronomy (and indeed in most areas of science)
unanticipated correlat\ons This is often how major discoveries have been made.
Data sets are now becoming sufficiently large that this is less possible -- even
prescribed processing of the data to test a hypothesis is becoming challenging.
In the near future, analysis of Petabyte databases will require the solution of this
problem.

New Horizons

It is worthwhile to briefly review this sea-change in the way astronomers produce
science. A giant departure from the tradition of one astronomer and one modest
data set per project has been the Sloan Digital Sky Survey: a 15TB imaging data
set covering multiple wavelengths and up to 10,000 square degrees of the sky
(hitp://www.sdss.org/). Nearly 100 Co-Is will mine these data in prescribed ways.
Current plans do not include mining the 15TB. Rather, 1TB of catalogs of
detected objects and another 2TB of their “cutout” pictures will be produced and
mined. Nevertheless, this will surely result in new understanding of our universe.
Imagine what might be discovered if the full 15TB could be explored efficiently!
Another refreshing and very successful departure from tradition is the 2MASS
infrared survey of the sky (http://irsa.ipac.caltech.edu). This group has poured
major effort into usability of the data products and efficient remote searching.

A New Collaboration

We see this research program attracting a broad range of mathematical,
computer and physical scientists. In addition to the obvious connections to
astronomy, statistics and large-scale computation, this program would also
include probability, data visualization and data management. We would also seek
faced somewhat dn‘ferent problems |nvoIV|ng massive data sets and immense
data streams for many years now. Some representation from theoretical
cosmologists who simulate universes would add fo the mix and allow the
question of comparing simulated universes to the actual universe to be more
profitably addressed.

B LI R B B B R R A S L

It will be particularly useful to study the characteristics of spatial processes, since
it nicely combines the central computational and statistical challenges. Very little
work has been done to date in this area, although a recent paper by Moore et al.
(2001) recognizes the importance of this problem and describes an algorithm for
computing estimates of higher order correlation functions that, for sufficiently
large data sets, is much more efficient than the obvious approach.

We need not simply a theoretical study of how massive astronomical data sets
should be analyzed, but major efforts to analyze the most recently available data
sets. Data from the Sloan Digital Sky Survey should be publicly available by
2003. It will be useful to work with this database in new ways, searching for low-
level correlations. Deeper imaging surveys, such as the Deep Lens Survey, are
producing imaging data and catalogs nearly to the depth that LSST will reach,
but over a very small area of sky by comparison to a decade of LSST operations.
Such surveys are precursors to LSST and their data products will prove to
valuable sand boxes for development of new algorithms.

A common technique in modern high-energy physics experiments is the “mock
data challenge.” The data stream, from detector, through data acquisition and
processing, to final science analysis, is simulated at the appropriate level of
detail. This allows a final acceptance testing of all data systems to be completed
along with the hardware, so that full-up science operations can begin on a much
better schedule, with good diagnostics in place. For the science, these studies
are just as important. Analysis teams combing for subtle effects can, in then end,
compare their result (and error estimate) with the “true” values of parameters that
were in the simulation. Often, a sample of “real” data is used to get the
background distribution of events correct. Using catalogs from the SDSS and the
Deep Lens Survey as a basis for the mock data challenge for the LSST will make
it more effective.

http://universe.ucdavis.edu/docs/data-challenge.pdf



Astronomical Challenge Areas not addressed here:
Petascale Computational Models of Astrophysical Phenomena

Numerical simulations will generate Petabytes of data output.

In many cases, multiple generations of models will be
simulated to test against telescopic observational data.

This model-to-data (theory-to-observation) matching leads to
model validation and new scientific understanding ...
— but it also leads to enormous combinatorial challenges, as the

number of input parameters and model output parameters
continue to grow as our models are refined.

Petascale computational challenges exist in the areas of
Monte Carlo sampling, optimization, maximum likelihood
estimation, and computational steering.

As the numerical simulations grow in size and complexity, we
also seek faster methods of numerical integration and
differentiation over densely gridded data structures.



Summary: Data Science Research Challenge Areas In
Astronomy over the next 10 years

Scalability of statistical, computational, & data mining
algorithms to multi-petabyte scales

Algorithms for optimization of simultaneous multi-point fitting
across massive multi-dimensional data cubes
Multi-resolution, multi-pole, fractal, hierarchical methods and
structures for exploration of condensed representations of
petascale databases

Petascale analytics for visual exploratory data analysis of
massive databases (including feature detection, pattern
recognition, correlation analysis, clustering, decomposition,
eigenvector discovery, dimension reduction)

Indexing and associative memory techniques (trees, graphs,
networks) for highly-dimensional petabyte databases

Rapid query and search algorithms for petabyte databases
(cf. think of Google’s PageRank statistic) (e.q., Query By Example)
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