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 Many scientific fields can benefit from fine-grained simulation and big data analytics 
enabled by extreme-scale supercomputers. Moreover, computing integrity and data 
confidentiality are critical in many scientific endeavors. Integrity is important because 
computed results must be trusted, accurate, and untainted. Data confidentiality could 
become prerequisite for data to be shared and to enable large-scale simulation and big data 
analytics applications.  
 However, existing techniques cannot adequately protect supercomputing 
infrastructures from faults or malicious tampering. Prevalent approaches include isolation, 
hardening of software and hardware, and active monitoring. However, supercomputing 
infrastructures generally are built to serve many diverse applications run by scientists 
around the world. Thus, isolation is not feasible. In addition, for any reasonably complex 
real-world system, it is not possible to eliminate every software and hardware bug and 
security vulnerability, even with the best possible engineering practices. Supercomputer 
architectures are performance-driven and often use cutting-edge hardware and software 
components. Thus, software and hardware bugs and security vulnerabilities that an 
adversary can exploit are expected. Once an attacker exposes a system, at least some 
aspects of confidentiality and integrity are immediately compromised.  
 This system weakness validates the need for inherently secure schemes to protect 
integrity and data confidentiality in a provably secure manner: one that affords an attempt 
to guess the content of confidential data is no better than random guessing, subject to 
standard computation hardness assumptions, yet allows required computations to be 
effectively performed on transformed data.  
 Regarding integrity, traditional approaches replicate computation across several 
machines, assuming not all machines are compromised. Then, computed results are checked 
against each other. However, once an adversary controls a leadership-class machine, that 
entity can tamper with computation results in the same way, making them agree. To 
address this, a dual-encryption approach, similar to those proposed in [1, 2, 3], can be 
employed. In this scheme, a computation is encrypted differently from the data and is 
performed directly on encrypted data, known as homomorphic computing. Because the 
computation is encrypted, attackers face a second layer of protection. Of note, this approach 
addresses integrity in the case of tampering or fault. However, it does not prevent complete 
data destruction. To resist data destruction, additional data replication and backup 
techniques need to be explored. 
 Extreme-scale scientific applications are compute intensive and provide unique 
scalability challenges to existing homomorphic computing approaches [4, 5, 6] that can 
introduce too much overhead. Two possible approaches can be exploited to address these 
issues and make inherently secure computation feasible for extreme-scale scientific 
applications.  

First, multiple features of the high-performance computing (HPC) platform can be 
exploited. For example, various levels of parallelism, including inter- and intra-node and 
data parallel instructions, can be used for each portion of homomorphic computation. 
Because the amount of computation required for each gate (in homomorphic computation, 
computation generally is modeled as arithmetic circuits) generally is independent of the 
input data, good load balancing can be achieved if the cost of per-gate computation can be 
accurately estimated when load is distributed. Hence, good scaling can be realized as long as 
the impact of communication overhead is mitigated. When designing arithmetic circuits for 
an application, the size and amount of coarse-grained parallelism that can be extracted from 
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them must be considered. For implementing a given function, there is a trade-off between 
the size and depth of arithmetic circuits. Performance can be optimized by customizing the 
trade-off based on the amount of parallelism provided. The DoubleCRT format significantly 
reduces time complexity for multiplication. Converting ciphertext to DoubleCRT format 
with the fast Fourier transform (FFT) and modulus reduction can provide efficient 
multiplication and modulus switching in homomorphic computation. Wide vector units and 
the many cores in modern processors offer good opportunities to significantly speedup FFT 
and modulus reduction on number-theoretic fields. Concurrent computation and data 
movement must be coordinated to maximize cache-hit rates. In addition, a field that allows 
efficient computation needs to be chosen and combined with Montgomery reduction to 
reduce or eliminate modulus operation overhead. Significant performance gains also can be 
derived by improving efficiency of memory access of homomorphic computation for the 
cache architecture of modern processors. In modern architectures, memory access is most 
efficient when aligned with cache lines. However, homomorphic computation often relies on 
ciphertext packing to improve performance. With ciphertext packing, permutations are 
required to rotate the positions of plaintexts to interact with each other. Permutation of 
plaintext positions is mapped to permutation of coefficients of polynomials that use 
ciphertext packing to encode the plaintexts. Moving data not only introduces overhead, but 
is also may cause unaligned memory access and pollute caches. A two-step approach can be 
used to address this issue. First, based on arithmetic circuits, the positions can be arranged 
to minimize permutations. In case some data are read-only, replicating them into multiple 
ciphertexts can be considered to increase the chance that at least one of them does not 
require rotation. This also may be achieved via virtual permutation, which can be 
implemented as indirections, or the algorithm can be altered to seek data in their original 
places rather than rotating the data. Zero-copy noncontiguous data transfers supported by 
various HPC network interface cards can be leveraged to rearrange data when they are 
transferred from one node to another node for next-stage processing.  

Second, application-specific data processing characteristics can be exploited to 
reduce overhead. Depending on the processing required for the data in specific applications, 
less general but more efficient computation schemes can be used. Using a specialized 
scheme can be as efficient as computing over data that have not been transformed. 
Moreover, the computation can be decomposed into several parts, with some parts using a 
general scheme and others employing more efficient, less general schemes. 
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