Trilinos Project Overview
HPCOR Workshop, September 2015
Michael Heroux, Sandia National Laboratories

Introduction

The Trilinos Project is a community-based development effort to provide reusable
software components for computational science and engineering application teams.
Trilinos provides a framework for scalable application development, a large collection of
functionality from geometry and meshing to discretizations, partitioning and load
balancing, performance-portable data classes, and solvers for linear, nonlinear, transient
and eigen systems, along with embedded optimization and UQ capabilities. All of these
capabilities are provided in a collection of roughly 60 packages that are compatible and
composable. The package architecture of Trilinos provides an environment for local
decision-making and development within each package team, package branding for
funding and identity in the community (each package has its own identity). Yet, each
package team participates in the broader discussions about Trilinos strategy and
community membership.

Development Team

Trilinos has contributions from more than 200 developers, with roughly 50 developers
actively contributing at any given time. However most people view themselves first as
package developers. For example, Muelu is the latest multi-level preconditioner package
in Trilinos and has 4 primary developers, plus contributions from several others.
Trilinos also have hundreds of user-developers; people who use Trilinos but also
develop extended capabilities on top of Trilinos.

The largest single concentration of developers is at Sandia National Laboratories in
Albuquerque, NM and Livermore, CA. Additional developers are at Oak Ridge National
Laboratory, the Technical University Munich, and various universities and research labs
in the United States and Europe. Team members include staff and faculty at these
institutions as well as numerous graduate students and postdocs.

Contributions are accepted from many other communities. All software is open source
with distribution on GitHub.com.

Other statistics

1. Languages: Trilinos packages are primarily written in C++. However PyTrilinos
provides a Python layer on top of the core libraries. Also, the ML and AztecOO
packages contain a substantial amount of C code.

2. Lines of code: Trilinos contains a little more than 1.1 M lines of code in 60 packages.

3. Primary methods: Trilinos provides a framework for scalable application
development, a large collection of functionality from geometry and meshing to
discretizations, partitioning and load balancing, performance-portable data classes,
and solvers for linear, nonlinear, transient and eigen systems, along with embedded
optimization and UQ capabilities.

4. Types of problems/domains/science application problems: Trilinos has
fundamental solver capabilities that span many application areas. However, we have



special purpose capabilities for many types of PDE problems, especially fluid flow,
structural dynamics, electromagnetics and thermal modeling. We also have custom
capabilities for circuit simulation, peridynamics, and integral formulations such as
classical density functional theories. We have a growing collection of specialized
capabilities for data analytics, including spectral methods and graph analysis.

5. Scale of resources commonly used for production runs: Applications based on
Trilinos run on systems from laptops to all of the largest computing systems in the
world. Several applications have used Trilinos at full-scale on leadership systems.

6. Supercomputers regularly used: All DOE systems, all European supercomputing
system, several Japanese systems. Trilinos is packaged as part of the Cray LIBSCI
product.

7. Libraries/tools for prototyping: Trilinos provide access to more than 50 third-
party libraries via its various package dependencies. Most notable are the uniform
access of many sparse direct solvers such as SuperLU and MUMPS, and access to
partitioning and load balancing tools such as ParMETIS and SCOTCH.

8. Libraries/tools for production science campaigns: Trilinos provides libraries for
many applications codes used in production science campaigns. Most notable are the
NNSA integrated codes efforts and the climate community’s Community Earth
Systems Model and ACME project.

Performance Portability

Trilinos has had a strong emphasis on code portability from project inception. We have
been early developers of multi-core, many-core and accelerator-based algorithms and
libraries. The Kokkos multi-dimensional array package started within the Trilinos
project. It is now available independently and within Trilinos.

Trilinos provides numerous levels of abstractions, from basic parallel-for, reduce and
scan patterns to abstractions for linear operators, matrices, non-linear operators and
basic data types. All of these capabilities enable performance portability and
extensibility.

Trilinos is fundamentally designed for code reuse across many architectures and
applications. Kokkos (discussed in another white paper submission) and Tpetra (also
discussed in another white paper) provide the fundamental scalable data classes, but
these are only the start. We also have significant efforts in thread-scalable linear algebra
and resilient algorithms. All of these efforts have led to significant advances in
performance portability across multi-core, many-core and accelerator-based node
architectures, along with improved inter-node scalability via algebraic multi-grid
methods.

Exascale challenges

The biggest challenge in moving to Exascale and beyond is the required application
refactoring around tasking and data-centric code architectures. Very few applications
are even aware of this approach, much less preparing to explore it or refactor their code
to adoptit. A lot of effort has gone into performance portability of basic parallel-for,
reduce and scan patterns, which is essential for good performance, but these approaches
alone will not provide the full thread scalability required for Exascale and beyond.



