

1
	

Applications White Paper for HPCOR: The FLASH Code
P. Tzeferacos, D. Q. Lamb, A. Dubey, K. Weide

Flash Center for Computational Science
Department of Astronomy & Astrophysics, University of Chicago

August 23, 2015

1. The FLASH code
FLASH1-3 is an open community code* that is developed at the Flash Center for Computational

Science of the University of Chicago under the auspices of DOE/NNSA/ASC and DOE/Office of
Science/ASCR. It is a multi-physics finite-volume code with multiple state-of-the-art hydrodynamics
(HD) and magneto-hydrodynamics (MHD) solvers4 and adaptive mesh refinement (AMR) on a block-
structured mesh5. The code has a large number of physics modules relevant to astrophysics, cosmology,
combustion, high energy density physics, and turbulence. FLASH has a large, worldwide user
community: more than 1,100 papers, authored by more than 1,600 scientists, have been published that
directly use FLASH results.

2. Development Model

The FLASH project started as part of the DOE ASC Academic Strategic Alliance Program
(ASAP), under the Advanced Scientific Computing Initiative (ASCI, now ASC); the aim of this program
was to create codes able to simulate physics problems that are complex and computationally demanding,
and for which experimental validation is challenging. More specifically, the FLASH project was to study
astrophysical thermonuclear explosions. It involved a broad range of scientists, from astrophysicists and
physicists to applied mathematicians and computer scientists.

Through the years, the code has undergone four major revisions, three of which involved
significant architectural advancement. A large number (>100) of research scientists, post-doctoral
scholars, graduate students, programmers, and technical staff in the Flash Center have contributed to the
development of FLASH. Members of the user community have also contributed code and complete
modules, ranging from general-purpose solvers to infrastructure enhancements. The Code Group at the
Flash Center manages additions to the code public releases: solvers and modules developed internally are
meticulously tested and adhere to coding standards. External contributions are incorporated in the public
releases with direct involvement of the Code Group to ensure compatibility. The software is
professionally managed with daily, automated regression testing on a variety of platforms, version
control, extensive documentation, and user support.

3. Code Characteristics

The FLASH code is mostly written in Fortran90, with some C, C++, and Python code additions.
It amounts to >1.2M lines of code, ~25% of which are comments. The code uses the Message-Passing
Interface (MPI) library for inter-processor communication, OpenMP for threading, and the HDF5 or
Parallel-NetCDF libraries for parallel I/O to achieve portability and scalability on a variety of different
parallel machines. The code uses various parallelization techniques, including domain decomposition,
mesh replication, and threading, to best utilize hardware resources, and scales to well over 100 K
processors. It is extremely portable in terms of platform-size: it can run on platforms ranging from laptops
and clusters to supercomputing systems such as the IBM BG/Q. The code is regularly used for production
runs on ANL’s Mira and TACC’s Stampede.

FLASH is primarily applied to solve mixed hyperbolic-parabolic-elliptic PDEs with reaction
networks on AMR meshes. The mesh itself is handled by either the PARAMESH library5, which has
organically co-existed with FLASH since its 1.x version, or the Chombo library6 developed at LBNL. A
number of explicit solvers for compressible HD and MHD are available with the code, as well as
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
* flash.uchicago.edu

2
	

multigrid, multipole, and Barnes-Hut tree Poisson solvers. The parabolic/diffusion terms are advanced
either explicitly or implicitly, using LLNL’s HYPRE library†. The code has been successfully applied to a
large variety of scientific domains, such as computational astrophysics, cosmology, computational fluid
dynamics, combustion, fluid instabilities, turbulence, and since its 4.x incarnation in 2011, high energy
density laboratory physics experiments3. The output analysis in production campaigns involves tools such
as VisIt‡, Yt§, and matplotlib**.

4. Code Portability and Path to Exascale
 The FLASH code was developed with modularity, extensibility, and efficient application of
parallelization techniques as important design goals. These have enabled FLASH to run efficiently on
different platforms. The code uses high-level abstractions for its components such as coding conventions
for encapsulation and clear understanding of data ownership for the various units, data locality in the
block-structured mesh, and inheritance. These concepts were introduced in the code development during
large version transitions, during which substantial parts of the code were re-written. Throughout the
development process on new architectures, the Code Group identifies and resolves performance
bottlenecks and compatibility issues through standard optimization techniques as well as redesign of
algorithms and data layout, where necessary. FLASH has proven to scale to more than a hundred
thousand processors for production runs on many current HPC platforms. The latest addition to the
FLASH code arsenal has been the OpenMP threading capabilities to address multi- and many-core
hardware architectures.

The ongoing paradigm shift in high performance computing is threatening to render the current
code architecture and development methodology inadequate. Future HPC platforms will have hierarchies
of parallelism through larger node count with smaller compute nodes, and heterogeneous computing units
within the nodes. On the memory side, the reduction in memory per core is one of the biggest challenges
facing the parallel model that FLASH currently uses. Additionally, the trend toward lower degree
networks also present challenges. We will need to enhance both the micro- and macro- parallelism of
FLASH in order to fully exploit future platforms, and we will need to incorporate dynamic runtime
management into the infrastructure to obtain operations- and task-based parallelism. The dependence of
FLASH on libraries (e.g., HYPRE) is a concern, since the performance of these libraries on the new
architectures may dictate the overall performance of FLASH for many applications.

References
1 B.A. Fryxell et al. FLASH: An adaptive mesh hydrodynamics code for modeling astrophysical
 thermonuclear flashes. Astrophysical Journal, Supplement 131, 273, 2000.
2 A. Dubey et al. Extensible component-based architecture for FLASH, a massively parallel, multi-
 physics simulation code. Parallel Comp. 35(10-11), 512, 2009.
3 P. Tzeferacos et al. FLASH MHD simulations of experiments that study shock-generated magnetic
 fields. HEDP in press, available online, DOI: 10.1016/j.hedp.2014.11.003, 2015.
4 D. Lee. A solution accurate, efficient and stable unsplit staggered mesh scheme for three dimensional
 magnetohydrodynamics. Journal of Computational Physics, 243:269, 2013.
5 P. MacNeice et al. PARAMESH: A parallel adaptive mesh refinement community toolkit. Computer
 Physics Communications, 126(3):330, 2000.
6 P. Colella et al. Chombo software package for AMR applications design document. Technical report,
 LBNL, Applied Numerical Algorithms Group, Computational Research Division, 2009.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
† computation.llnl.gov/project/linear_solvers/software.php
‡ visit.llnl.gov
§ yt-project.org
** matplotlib.org

