
Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-CONF-676454

Silo/HDF5 and Portable, Scalable, Parallel I/O
Mark C. Miller, miller86@llnl.gov

How many developers are involved and how is the development structured?
Silo is a BSD Open Source library for I/O of scientific computing data to portable, binary disk files.
Development began in 1993 in B Division at LLNL. By 1998, Silo expertise helped to bring about HDF5 and
then added HDF5 as a middleware layer within Silo. Throughout its life, 15-20 different developers have
contributed a total of about 5-7 man-years. Vendor contracts for HDF5 enhancements to support Silo have
amounted to ~$2M. Occasionally Silo gets community contributions as patches to a release. Currently Silo
has one primary developer at 0.2 FTE plus an occasional Windows developer both located at LLNL. Silo
consists of 210K lines of C code. Why C? It minimizes issues supporting C, C++ and Fortran callers with a
common implementation. Silo is hosted with a Subversion repo, web site for releases and email list at LLNL
and a Redmine site at ORNL. Silo’s user base spans many DOE (e.g. LLNL, ANL, NERSC, ORNL), DoD,
academic (e.g. TACC) and commercial sites. Interest in Silo continues to grow due to its use in flagship LLNL
codes like Ale3d and VisIt and, more recently, has been experiencing a resurgence in Fortran usage.

Primary methods
Silo was developed to address a fundamental software engineering challenge; to foster the development of
portable, reusable software through a common API, data model and file format for storing and exchanging
data. Raw performance, although important, has proven to be a secondary consideration to common,
reusable software Silo enables. Although Silo is a serial I/O library, key feature enable its use in scalable,
parallel applications using the Multiple Independent File (MIF) I/O paradigm. In MIF-IO, a mesh is
decomposed into ND domains, processed on NT tasks and stored in NF files where ND, NT, NF can be chosen
entirely independently. Given ND=60, a Silo application can run 1:1 domains-to-tasks with NT=60, NF=6, 2:1
with NT=30, NF=3 files, or even 3:1 with NT1=12, 4:1 with NT2=6 of NT1+NT2=18 total tasks with NF=8 files.
MIF-IO has many advantages; the programming model is simple; its easy to retrofit existing sequential
apps; there is no required global-to-local and local-to-global remapping during I/O; compression and other
data reduction services are easily handled even in parallel; good performance demands very little from the
underlying file system; application controlled throttling of I/O resources is easy; great flexibility is
permitted in the allocation of compute resources for any given problem setup. Finally, MIF-IO is completely
analogous to how “big data” Map/Reduce I/O is handled as shards in the data sciences community. HDF5
provides a key layer of abstraction in the HPC I/O stack. The I/O Stack is a layering of software abstractions
entirely analogous to IP Protocol Stack. Using HDF5 as a middleware layer, we can often address
performance issues by adjustments to HDF5 or Silo without touching applications; compression to improve
I/O and storage efficiency, application-level checksumming to mitigate file system reliability issues; a BG/P
specific Virtual File Driver to gain 50x performance improvement to name just a few.

Types of problems/domains/science application problems
Due to its generally useful mesh and field abstractions, Silo is used in many different application domains.
At LLNL, it is used for RadHydro, FEM, CFD, CEM, MD, and Structural Mechanics codes to name a few.

Scale of resources commonly used for production runs
Silo is routinely used at scales ranging from dual-core laptops to 105+ core LCF computing platforms at
various DOE sites. Its use in runs of 104+ cores is typical. While Windows/OSX laptops can hardly be
considered scalable, the ability to develop, test and debug Silo applications on such systems is nonetheless
an invaluable enablement to developing and supporting capabilities for extreme scale.

Supercomputers regularly used
Silo sees use predominantly at LLNL but also at ANL, ORNL and other DOE and DoD sites, academic
institutions such as TACC and and even some commercial companies.

Libraries/tools for prototyping
Valgrind, Totalview, HDF5, GNU compiler tools (gcov, mudflap)

Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-CONF-676454

Describe efforts to develop code portable across diverse architectures
The HPC I/O Stack offers a number of layers at which portability solutions have been developed. In the late
90’s the MPI-IO interface provided portability across GPFS, Lustre and PVFS file systems being developed in
that era. The HDF5 interface provides portability of data across different CPU architectures (e.g. endian-
ness, float-format), compression schemes (e.g. gzip, szip, fpzip, hzip) and portability of interface across
different storage system interfaces (MPI-IO, Posix, Mmap, Globus, NDGM, VOL). The Silo layer has provided
portable mesh and field abstractions across different I/O libraries (HDF5, netCDF, PDB, Tarus) though
HDF5 is now the only of these interfaces routinely used in scalable applications using Silo.

Where were the abstractions?
The HPC I/O stack is a set of layered abstractions. At the top, applications use the Silo API and its
computational object abstractions (meshes and fields). In turn, Silo’s mesh and field abstractions are
implemented in terms of programming language abstractions (arrays, structs, lists). These language
abstractions are in turn implemented in terms secondary storage interfaces and abstractions (e.g. MPI-IO,
stdio, files, byte lengths and offsets). This multi-layer I/O stack has provided great flexibility in
incorporating performant solutions. In general, the best solutions have been implemented as deeply within
the I/O stack as possible leaving the upper level Silo API and codes that use it untouched.

How much code re-use was possible? If something was not possible, describe why.
Throughout its 20+ year life and through several transitions in order of magnitude of scale, a majority of
the Silo library has proven reusable for I/O needs of scalable HPC codes. On a few occasions, new objects
that fit within the current abstractions have been added. But, the original abstractions have continued to
work. There is, however, a growing need to support high order elements introducing a fundamental change
in Silo’s mesh abstractions. In one instance, an object was added to Silo which suffered from scaling issues
and was replaced. Although Silo needs some housekeeping, refactoring and modernization, its API and data
model remain applicable to current scalable applications. The fact that the same Silo API has supported
codes for many years has meant that little effort/cost has been necessary to re-engineer the I/O portions of
these codes as scales have grown.

What successes have you had with performant code across different architectures? Were the
same algorithms applicable at all across the architectures?
The basic MIF parallel I/O paradigm has served well through several transitions in order of magnitude of
scale. On the other hand, a conditionally compiled MPI-IO optimization code block in HDF5 had been
accidentally disabled and gone undetected in multiple releases of HDF5. This experience underscores the
fact that manually maintaining multiple implementations of a capability can be a challenge.

What approaches did you reject and why? What was the leading contender rejected?
Where Silo is concerned, we have rejected concurrent I/O to a single, shared file (SSF) as a basic I/O
paradigm due to its inflexibility and challenges in tuning it to get good performance. However, this decision
is worth revisiting periodically to assess if logistical constraints and performance tuning have improved.

What is your greatest fear going to exascale for application portability and functionality?
Where I/O is concerned, we need to transition from push to pull paradigms. And, we need the added ability
for users to control when and how much data is pulled. In a pull paradigm, applications simply announce
they hayve data ready at the end of each main compute cycle. A restart consumer, for example, monitors
system MTBF params, power consumption, etc. and pulls data from applications as needed to minimize
restart costs. Likewise, post-processing and analysis consumers would pull data from codes to meet the
needs of user’s analysis workflows. Pulling data would include the ability to reduce the data being captured
by various means including deciding when data is pulled by various triggering conditions and how much
data is pulled by various data reductions including spatio-temporal & feature-based subsetting, resolution
reduction, precision reduction, statistical reductions, lossless and loss-controlled compression. In this new
pull paradigm for I/O, the code to manage data capture for any purpose is moved out of apps (where it is
currently often duplicated among apps) and centralized to a common scalable data management system
that all codes can benefit from.

Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-CONF-676454

	How many developers are involved and how is the development structured?
	Primary methods
	Types of problems/domains/science application problems
	Scale of resources commonly used for production runs
	Supercomputers regularly used
	Libraries/tools for prototyping
	Describe efforts to develop code portable across diverse architectures
	Where were the abstractions?
	How much code re-use was possible? If something was not possible, describe why.
	What successes have you had with performant code across different architectures? Were the same algorithms applicable at all across the architectures?
	What approaches did you reject and why? What was the leading contender rejected?
	What is your greatest fear going to exascale for application portability and functionality?

