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Silo/HDF5 and Portable, Scalable, Parallel I/O 
Mark C. Miller,  miller86@llnl.gov 

How many developers are involved and how is the development structured? 
Silo is a BSD Open Source library for I/O of scientific computing data to portable, binary disk files. 
Development began in 1993 in B Division at LLNL. By 1998, Silo expertise helped to bring about HDF5 and 
then added HDF5 as a middleware layer within Silo. Throughout its life, 15-20 different developers have 
contributed a total of about 5-7 man-years. Vendor contracts for HDF5 enhancements to support Silo have 
amounted to ~$2M. Occasionally Silo gets community contributions as patches to a release. Currently Silo 
has one primary developer at 0.2 FTE plus an occasional Windows developer both located at LLNL. Silo 
consists of 210K lines of C code. Why C? It minimizes issues supporting C, C++ and Fortran callers with a 
common implementation. Silo is hosted with a Subversion repo, web site for releases and email list at LLNL 
and a Redmine site at ORNL. Silo’s user base spans many DOE (e.g. LLNL, ANL, NERSC, ORNL), DoD, 
academic (e.g. TACC) and commercial sites. Interest in Silo continues to grow due to its use in flagship LLNL 
codes like Ale3d and VisIt and, more recently, has been experiencing a resurgence in Fortran usage. 

Primary methods 
Silo was developed to address a fundamental software engineering challenge; to foster the development of 
portable, reusable software through a common API, data model and file format for storing and exchanging 
data. Raw performance, although important, has proven to be a secondary consideration to common, 
reusable software Silo enables. Although Silo is a serial I/O library, key feature enable its use in scalable, 
parallel applications using the Multiple Independent File (MIF) I/O paradigm. In MIF-IO, a mesh is 
decomposed into ND domains, processed on NT tasks and stored in NF files where ND, NT, NF can be chosen 
entirely independently. Given ND=60, a Silo application can run 1:1 domains-to-tasks with NT=60, NF=6, 2:1 
with NT=30, NF=3 files, or even 3:1 with NT1=12, 4:1 with NT2=6 of NT1+NT2=18 total tasks with NF=8 files. 
MIF-IO has many advantages; the programming model is simple; its easy to retrofit existing sequential 
apps; there is no required global-to-local and local-to-global remapping during I/O; compression and other 
data reduction services are easily handled even in parallel; good performance demands very little from the 
underlying file system; application controlled throttling of I/O resources is easy; great flexibility is 
permitted in the allocation of compute resources for any given problem setup. Finally, MIF-IO is completely 
analogous to how “big data” Map/Reduce I/O is handled as shards in the data sciences community. HDF5 
provides a key layer of abstraction in the HPC I/O stack. The I/O Stack is a layering of software abstractions 
entirely analogous to IP Protocol Stack. Using HDF5 as a middleware layer, we can often address 
performance issues by adjustments to HDF5 or Silo without touching applications; compression to improve 
I/O and storage efficiency, application-level checksumming to mitigate file system reliability issues; a BG/P 
specific Virtual File Driver to gain 50x performance improvement to name just a few. 

Types of problems/domains/science application problems 
Due to its generally useful mesh and field abstractions, Silo is used in many different application domains. 
At LLNL, it is used for RadHydro, FEM, CFD, CEM, MD, and Structural Mechanics codes to name a few. 

Scale of resources commonly used for production runs 
Silo is routinely used at scales ranging from dual-core laptops to 105+ core LCF computing platforms at 
various DOE sites. Its use in runs of 104+ cores is typical. While Windows/OSX laptops can hardly be 
considered scalable, the ability to develop, test and debug Silo applications on such systems is nonetheless 
an invaluable enablement to developing and supporting capabilities for extreme scale. 

Supercomputers regularly used 
Silo sees use predominantly at LLNL but also at ANL, ORNL and other DOE and DoD sites, academic 
institutions such as TACC and and even some commercial companies.  

Libraries/tools for prototyping 
Valgrind, Totalview, HDF5, GNU compiler tools (gcov, mudflap)  
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Describe efforts to develop code portable across diverse architectures 
The HPC I/O Stack offers a number of layers at which portability solutions have been developed. In the late 
90’s the MPI-IO interface provided portability across GPFS, Lustre and PVFS file systems being developed in 
that era. The HDF5 interface provides portability of data across different CPU architectures (e.g. endian-
ness, float-format), compression schemes (e.g. gzip, szip, fpzip, hzip) and portability of interface across 
different storage system interfaces (MPI-IO, Posix, Mmap, Globus, NDGM, VOL). The Silo layer has provided 
portable mesh and field abstractions across different I/O libraries (HDF5, netCDF, PDB, Tarus) though 
HDF5 is now the only of these interfaces routinely used in scalable applications using Silo. 

Where were the abstractions? 
The HPC I/O stack is a set of layered abstractions. At the top, applications use the Silo API and its 
computational object abstractions (meshes and fields). In turn, Silo’s mesh and field abstractions are 
implemented in terms of programming language abstractions (arrays, structs, lists). These language 
abstractions are in turn implemented in terms secondary storage interfaces and abstractions (e.g. MPI-IO, 
stdio, files, byte lengths and offsets). This multi-layer I/O stack has provided great flexibility in 
incorporating performant solutions. In general, the best solutions have been implemented as deeply within 
the I/O stack as possible leaving the upper level Silo API and codes that use it untouched. 

How much code re-use was possible? If something was not possible, describe why. 
Throughout its 20+ year life and through several transitions in order of magnitude of scale, a majority of 
the Silo library has proven reusable for I/O needs of scalable HPC codes. On a few occasions, new objects 
that fit within the current abstractions have been added. But, the original abstractions have continued to 
work. There is, however, a growing need to support high order elements introducing a fundamental change 
in Silo’s mesh abstractions. In one instance, an object was added to Silo which suffered from scaling issues 
and was replaced. Although Silo needs some housekeeping, refactoring and modernization, its API and data 
model remain applicable to current scalable applications. The fact that the same Silo API has supported 
codes for many years has meant that little effort/cost has been necessary to re-engineer the I/O portions of 
these codes as scales have grown. 

What successes have you had with performant code across different architectures? Were the 
same algorithms applicable at all across the architectures? 
The basic MIF parallel I/O paradigm has served well through several transitions in order of magnitude of 
scale. On the other hand, a conditionally compiled MPI-IO optimization code block in HDF5 had been 
accidentally disabled and gone undetected in multiple releases of HDF5. This experience underscores the 
fact that manually maintaining multiple implementations of a capability can be a challenge. 

What approaches did you reject and why? What was the leading contender rejected? 
Where Silo is concerned, we have rejected concurrent I/O to a single, shared file (SSF) as a basic I/O 
paradigm due to its inflexibility and challenges in tuning it to get good performance. However, this decision 
is worth revisiting periodically to assess if logistical constraints and performance tuning have improved. 

What is your greatest fear going to exascale for application portability and functionality? 
Where I/O is concerned, we need to transition from push to pull paradigms. And, we need the added ability 
for users to control when and how much data is pulled. In a pull paradigm, applications simply announce 
they hayve data ready at the end of each main compute cycle. A restart consumer, for example, monitors 
system MTBF params, power consumption, etc. and pulls data from applications as needed to minimize 
restart costs. Likewise, post-processing and analysis consumers would pull data from codes to meet the 
needs of user’s analysis workflows. Pulling data would include the ability to reduce the data being captured 
by various means including deciding when data is pulled by various triggering conditions and how much 
data is pulled by various data reductions including spatio-temporal & feature-based subsetting, resolution 
reduction, precision reduction, statistical reductions, lossless and loss-controlled compression. In this new 
pull paradigm for I/O, the code to manage data capture for any purpose is moved out of apps (where it is 
currently often duplicated among apps) and centralized to a common scalable data management system 
that all codes can benefit from. 
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