
Production Codes and Teams in
Plasma and High-Energy Density Physics

Alice Koniges1, Jean-Luc Vay1, Richard Gerber1, Henri Vincenti1, Leroy Anthony Drummond1,

Katie Antypas1, Alex Friedman2, David Grote2, Aaron Fisher2, Nathan Masters2, David Eder2

1Lawrence Berkeley National Laboratory, 2Lawrence Livermore National Laboratory

Corresponding Author: aekoniges@lbl.gov, National Energy Research Scientific Computing Center

Simulations in fusion energy and high-energy density physics have long been exemplars for team code
efforts and high performance computing (HPC). Today, as architectural revolutions are once again changing
the mainstream computation models, we describe the current landscape of HPC with two specific example
codes, and comment on portability issues for code teams and applications. We draw on our experience
working with code teams using two fundamentally different computational approaches that are central to
modeling problems in fusion energy and high-energy density science, including laser-driven systems. The
first code and team we describe is based on ALE-AMR, which places physics packages on top of a structured
adaptive mesh refinement parallel framework and the second code and team is based on Warp, which uses
the particle-in-cell (PIC) method with a customizable python interface.

The ALE-AMR code combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh
Refinement (AMR) to connect the continuum to micro-structural regimes[1]. The ALE hydrodynamics is
common in many of the codes used to model inertial fusion energy regimes, and the structured AMR-grid
component is familiar in shock hydrodynamics codes, astrophysics, and combustion. The code is unique in
its ability to model both hot radiating plasmas and cold fragmenting solids. The hydrodynamics are done
in a Lagrangian model (wherein material moves with the mesh), but the resulting mesh can be modified
to prevent tangling or severe mesh distortions. If the entire mesh is restored to the mesh of the previous
time-step after every step, the code is said to be run in Eulerian mode (fixed mesh). In general, this is
not done, and we only modify a portion of the mesh during a fraction of the time steps. This ability to do
selective remapping is the reason to use the word “arbitrary.” The interface reconstruction scheme allows
for void regions in neighboring zones to merge and can produce fragments of material surrounded by void[2].

Warp is a 3-D time-dependent multiple-species PIC code[3, 4], with the addition of a “warped-coordinate”
particle advance to treat particles in a curved beam pipe[5]. As part of the PIC cycle, fields are calculated
from Poisson equations for scalar and vector potentials, or via the Maxwell equations. The particle push
step is familiar to many codes using a PIC formulation, and even codes simulating gyrokinetic motion in

Figure 1: Left: Six ALE-AMR frames of Rayleigh instability of liquid cylinder breaking into droplets. Right:
Materials for target with Al cooling rings and Au cone plus results at 211 ns of remaining solid material.

1



Figure 2: Left: Warp simulation of laser creating plasma wake and resulting high-energy electron beam.
Right: Line count for ALE-AMR and SAMRAI supporting library. Warp has 164201 lines of Fortran and
102744 lines of Python plus an additional roughly 150,000 lines of automatically generated C and Fortran.

magnetic fusion plasmas can be written in this fashion. In Warp, time-dependent applied external fields can
be specified through the Python user interface. The interface includes initialization, run-time options, and
code generation for realistic modeling of complex systems. Recently, large scale simulations validated a new
concept of injection of ultra-low emittance beam[6].

Both of these codes have relatively modest-sized development teams, generally one or two core senior
people, a post-doc or two, and possibly students, with people moving in and out of the work as funding grows
or diminishes. In additional to people working on the code directly, there are also user bases for production
versions. The initial parallelization is generally based on MPI, however both of these projects are moving
towards incorporating OpenMP to better use the next generation systems. While certain packages of the
codes can be written with accelerator-based languages, this is tedious and not generally portable into the
main code without conditional compilation.

In both codes, the use of libraries can streamline development and hide parallelism, however thread
safety between libraries can become problematic when combining languages and parallelization techniques.
In general, PIC codes scale quite well, with potential bottlenecks being necessary load balancing steps and
field solves. The AMR framework codes are traditionally harder to scale, but they may lend themselves
to fine-grained parallelism that benefits from an approach using multithreading. If OpenMP is introduced,
then binding threads to data through locality placement becomes crucial. In the future, we may hope that
newer models that take advantage of asynchronous runtime support, such as HPX, may lead to enhanced
scalability. However the algorithms may require alteration to use such new APIs. Programming models that
are tied to standards, for instance the C++ standard (e.g., HPX-3 follows the C++11/14 standard), and
also the OpenMP standard (for accelerator target directives) lead to more confidence that porting efforts
will be fruitful. The two codes described here are often run on NERSC systems, and optimizing them
for accelerator-based platforms would require extra work. Warp, in particular, runs nicely on laptops for
development, while the AMR framework that ALE-AMR depends on is more difficult to run developmentally
on a laptop. Both codes can target Visit for visualizations.

References
[1] A. Koniges, N. Masters, A. Fisher, D. Eder, W. Liu, R. Anderson, D. Benson, A. Bertozzi, Plasma Science and Technology

17(2), 117 (2015)

[2] D. Eder, A. Fisher, A. Koniges, N. Masters, Nuclear Fusion 53(11), 113037 (2013)

[3] D. Grote, A. A. Friedman, J.L. Vay, H. I., AIP Conf. Proc. 749, 55 (2005)

[4] A. Friedman, R.H. Cohen, D.P. Grote, S.M. Lund, W.M. Sharp, J.L. Vay, I. Haber, R. Kishek et al., Plasma Science, IEEE
Transactions on 42(5), 1321 (2014)

[5] J.L. Vay, D. Grote, R. Cohen, A. Friedman, Computational Science & Discovery 5(1), 014019 (2012)

[6] L.L. Yu, E. Esarey, C.B. Schroeder, J.L. Vay, C. Benedetti, C.G.R. Geddes, M. Chen, W.P. Leemans, Phys. Rev. Lett. 112,
125001 (2014)

2


