
Applications White Paper for the DOE HPCOR meeting (September 15-17, 2015)

Particle-In-Cell Simulations of Kinetic Plasma Dynamics using the GTC-Princeton
(GTC-P) Code

Authors: William Tang and Bei Wang, Princeton University, Princeton Institute for
Computational Science & Engineering (PICSciE)

GTC-Princeton (GTC-P) is a highly scalable and portable particle-in-cell code based on
first principles physics and developed to address kinetic turbulence dynamics of
importance to burning plasma experiments such as International Thermonuclear
Experimental Reactor (ITER) -- the crucial next step in the quest for the fusion energy.
The GTC-P project was started in 2008 with the goal of producing a modern HPC
application capable of delivering discovery science for increasing problem size by
effective utilization of the most advanced supercomputing platforms. The code
development is led by physicists and computational scientists from PPPL and Princeton
University. Key members of the GTC-P team have had a long and fruitful collaborative
history over the past five years with computer scientists in the Computer Science
Department at LBNL, Penn State University, and more recently with the Intel Parallel
Computing Center at ETH Zurich – resulting in a thread- and accelerator- optimized
version of the code.

A complete rewrite of the original GTC-P FORTRAN code in the C language was
initially carried out by computer scientists at LBNL in 2010. Novel multi-core-centric
optimizations were subsequently introduced to enhance the performance of this code. To
address heterogeneous, accelerator architecture, the corresponding GPU version using the
CUDA language was introduced in 2012. A highly efficient radial domain
decomposition feature was incorporated in 2013 to enable GTC-P to carry out discovery
physics simulations for large problem size with unprecedented phase-space resolution
and long temporal duration resolution. More recent efforts include collaborative
contributions to optimize GTC-P on Intel Xeon Phi systems such as Stampede at NSF’s
TACC and on TH-2 in China. These aforementioned advances have enabled GTC-P to
exhibit efficient performance scaling on the top 7 supercomputers worldwide in 2015.
	

The GTC-P code was developed using C language and an MPI/OpenMP hybrid
programming model with GPU and MIC acceleration. The total number of lines of the
code is about 13,000. GTC-P is a particle-in-cell (PIC) code which solves the five
dimensional Vlasov-Poisson equation in full, global 3D toroidal geometry to address
kinetic turbulence issues in magnetically-confined fusion experimental facilities known
as tokamaks. In PIC methods, the dynamics of the distribution function described by the
Vlasov equation is discretized by a set of particles, and the self-consistent
electromagnetic fields are represented and solved on grid. The use of a grid for the field
equations (e.g., Poisson equation) accelerates the method by reducing the computational
complexity of a particle method from O(NlogN) to O(N+MlogM), where N is the number
particles and M is the number of mesh points. In PIC methods, the ratio of particle to
mesh point or particles per cell (ppc) number ranges from 100 to 5,000 depending on the

specific portion of the distribution functions being discretized. In the well-established
delta-f method, only the perturbation is discretized with respect to an equilibrium state
(analytical representation). A ppc number of 100 to 300 is generally found to be
sufficient for achieving appropriate convergence in numerical resolution. For production
runs, the minimal number of mesh points in an ITER size plasma simulation is about 130
million. In a delta-f method with 100 ppc resolution, the number of particles for a ITER
size plasma simulation is 13 billion. Usually, for production simulations, we use, for
example, up to 16,384 Mira nodes on the IBM Blue-Gene/Q system at the ALCF.

A key highlight of GTC-P is its portability and performance across a wide range of multi
peta-scale platforms at full or near-full capability. We benefit from the fact that GTC-P is
not critically dependent on any third-party libraries. We commenced this effort by
implementing a hand-coded, highly-optimized Poisson solver with multithreading
capability. Although obtaining the best possible performance on each explored
architecture would require platform-specific optimization strategies, we have achieved
reasonable success by deploying a pluggable software component approach in
architecting our application. Specifically, the interface is preserved across all
implementations targeting CPU-based codes and GPU (or Intel Xeon Phi) hybrid
implementations. Components are chosen based on the target platform during the
application build process. This enables having a unified code base with the best possible
performance without sacrificing portability. Behind the unified interface, we explore
platform-specific optimization strategies. Some optimizations, such as sorting particles
and vectorization, are common to all platforms, but implementation details differ. Other
optimizations, such as handling NUMA issues and load imbalance, are specific to certain
platforms. Designing routine interfaces is of crucial importance to allow portability
without compromising performance-tuning opportunities.

When porting GTC-P to new architectures, we were able to preserve the physics and
algorithm foundations. More importantly, we found the distributed memory model via
one MPI process per node was sufficient in attaining high scalability. Unfortunately,
expression of on-node parallelism, data locality, and synchronization were architecture-
specific and expressed differently in each programming model. This dichotomy between
identical physics and dramatically different implementations greatly increases the
software engineering and computer science efforts required to target emerging
architectures.

We expect that a substantial code restructuring effort is required to efficiently apply
directive-based programming models, such as OpenACC specification 1.0, to the
particle-grid interpolation routines in GTC-P. For instance, charge deposition can only
be efficiently offloaded if the programming model can handle data hazards in the updates
to the charge grid (a multi-dimensional floating-point array). Restricting reduction
clauses to scalar variables or not supporting atomics for floating-point variables can
render adoption less obvious for charge-deposition-like kernels. Some of these
restrictions were rectified in the recent OpenACC specification 2.0. Having efficient
support for this specification on HPC systems can be expected to accelerate progress in
establishing the viability of adopting OpenACC.

