
HPCOR Scientific Software Architecture for Portability and Performance
MILC Lattice QCD

Steven Gottlieb

I will be talking about the MILC Collaboration suite of codes for lattice QCD. These
codes deal with Nature’s strong interaction, which is a theory of quarks and gluons. The
fields (physical variables) for the quarks and gluons are distributed on the sites and links
between sites of a four-dimensional space-time grid. The fields are generally 3-component
complex vectors or 3×3 complex matrices. The continuum partial differential equations
that describe the theory are discretized on the grid (lattice). The main algorithms are
sparse matrix solvers and molecular-dynamics like evolution (in simulation time) of the
fields.

1. How many developers are involved and how is the development structured? (co-
located team, post-docs, community contributions, etc.)

This is more complicated than it might seem as the code has grown over the years
and it is now linked to the community software developed by USQCD and funded by the
SciDAC program. There are three core faculty MILC developers, and between 2 and four
postdocs working directly with MILC PIs. The PIs are at different institutions. There are
a number of university and lab personnel on the USQCD software committee, but their
missions are diverse and only some of the work is directly relevant for MILC.

MILC has been an open source code for about two decades. People adapt it, but
not that much comes back to support the entire community. Perhaps our recent move
to github will help in this regard, but I think a bigger problem is that it is named for
a particular collaboration, so outsiders may be disinclined to contribute. They may also
want to retain the proprietary edge from their own developments.

2. Where relevant, please discuss:
* Language
MILC is written in C and includes some assembly routines with SSE being the most

useful. The GPU routines use QUDA, which started at Boston University and is now
developed by an international team with strong involvement of NVIDIA who hired two of
the original developers and my last postdoc. QUDA uses C++, CUDA, and python.

Xeon Phi development, which is much less mature, relies on a code generator written
in C++ that supports AVX512 and narrower vector units. Bálint Joó at Jefferson Lab
and several Intel engineers pioneered and are helping with this effort. This approach is
called QPhiX and is not our only approach on Xeon Phi. Peter Boyle of the University
of Edinburgh has started the C++ open source ‘Grid project’ that some of the principle
MILC developers have begun to explore. The code would need to be adapted to support
staggered quarks to be useful for MILC, but if Grid is performant, that should not require
fundamental changes.

* Lines of code:
197K in .c, 18K in .h for MILC itself
* Primary methods
discretized p.d.e.; sparse matrix solvers, e.g., CG, BiCGStab; molecular dynamics like

updating for creating gauge configurations; staggered multigrid (coming).
* Types of problems/domains/science application problems

1



Lattice QCD, high energy and nuclear theory. The calculations support important
goals in P5 and NSAC long range planning documents.

* Scale of resources commonly used for production runs
100M core-hours on Mira; 16M node-hours on Blue Waters; 66M MPP hours on

NERSC; 9M core-hours on Stampede; lots of time on CPU and GPU clusters
* Supercomputers regularly used: see above
* Libraries/tools for prototyping
USQCD libraries such as QOP, QDP, QLA, QUDA
starting to make more use of VTune
* Libraries/tools for production science campaigns: see above
FFTW
* Describe efforts to develop code (application, library, etc.) portable across diverse

architectures.
Mostly based on libraries at this point. Major modules of the algorithm are optimized

in the QOP and QUDA libraries for CPU and GPU. Data needs to be remapped when
entering and leaving the optimized routines. Xeon Phi also requires its own data layout.

* Where were the abstractions?
We would probably benefit from an abstraction that would let the application devel-

oper code at the field level and not have to worry about every inner loop which requires
detailed knowledge of the data layout that needs to change for different architectures.

* How much code re-use was possible? If something was not possible, please describe
why.

The high level application code is mostly unchanged, but all the inner loops with the
bulk of the computation are rewritten by the experts on a particular architecture.

* What successes have you had with performant code across difference architectures?
Were the same algorithms applicable at all across the architectures?

We do get very good performance at the cost of reworking the data layout and ap-
proach to parallelism. This is true on CPUs and GPUs and the solver on Xeon Phi.
However, communication balance on GPUs has been an issue limiting scaling and en-
couraging us to work on communication avoiding algorithms. Knights Corner has been
ineffective for multi-chip running, but we hope Knights Landing will be better.

We are eager to see of Grid can be adapted to perform well on GPUs so that application
programmers can see a single higher level code, although the developers of Grid will need
to deal with the various architectures.

* What approaches did you reject and why? What was the leading contender rejected?
* What is your greatest fear going to exascale for application portability and func-

tionality?
Only one?
Not having the manpower and expertise necessary to develop a single approach useful

on multiple architectures.
Having to maintain what are essentially three different code bases because of the

previous challenge.
Scaling will be severely limited because of the imbalance between network bandwidth

and node power.

2


