
Computational Chemistry and Materials: NWChem

Bert de Jong

NWChem is an open-source computational chemistry and materials software
suite, covering a broad range of capabilities for chemistry and materials
simulations. The code is primarily developed at PNNL, with pockets of
development at LBNL and various university groups. Development at the labs is
done by staff supported by postdocs, while the work at universities is done by
postdocs and graduate students.
NWChem consists of approximately 3 million lines of code, written in Fortran77
and C. Slowly Fortran90 is being introduced into the code, and conversations are
ongoing to enable cross language integration with object oriented languages
such as C++. Data movement is done using one-sided put, get, and accumulate
operations using the Global Arrays Toolkit. The Partitioned Global Address
Space, or PGAS, is our main abstraction model used in the code, enabling
coarse grained task parallelism. At LBNL we’re currently building an NWChem
PGAS structure using LBNL’s GASNet, which eventually will give us access to
languages such as UPC++ that allow more flexible work scheduling models.
Single level parallelism in NWChem is achieved using a global task counter as a
queue. While the NWChem architecture was designed to have well defined APIs,
we have not seen wide use of developed algorithms. New codes and libraries are
being developed that could be integrated with NWChem. However, many are
developed using C++ or other truly object oriented codes, which makes
integration with Fortran based codes rather complex. Within computational
chemistry and materials there are no standardized APIs. Some attempts were
made with the ASCR Common Component Architecture, which achieved some
limited successes.
The software runs on a large variety of platforms, from desktops and
workstations to departmental clusters and supercomputers worldwide, including
those at NERSC and the leadership computing facilities. Supporting a diverse set
of hardware platforms affects the choice of algorithms, and because of the HPC
focus affects performance on smaller systems. The PGAS data abstraction
simplifies the portability across platforms amenable to this programming model.
However, next generation architectures (both small clusters and
supercomputers) will need a more flexible programming model that allows for
multiple levels of data parallelism and task parallelism.
The software suite contains a wide variety of scientific methods, ranging from
high accuracy coupled cluster (CC) methods to Density Functional Theory (DFT)
to classical Molecular Dynamics (MD). Coupled cluster algorithms have a
computational complexity of O(N6-N7), and use block-sparse DGEMM-like
kernels. In NWChem these complex to code kernels are computer-generated
with the Tensor Contraction Engine software. Both DFT and CC methods use
Gaussian basis functions to discretize the wave function of the Schrodinger
equation. DFT formally has a computational complexity of O(N4), but in reality

has a complexity that is O(N3) or lower depending on on large the system is and
to what extend geometrical sparsity is utilized. The scalability of DFT is primarily
limited by the eigensolvers used in the code. The sizes of matrices typically used
in simulations limit the scalability of diagonalization to hundreds of processors.
Alternative algorithms, such as orbitals free DFT or a DGEMM focused density
purification scheme allow increased scalability of the the method. NWChem also
contains a plane wave discretized capability with periodic boundary conditions to
model the structure and dynamics of materials and condensed matter in general.
The main computational kernels driving the performance of the plane wave
capability are tall-skinny DGEMMs and global 3D-FFTs. NWChem also has a
classical MD code, where the scalability is purely driven by network
communication.
The software has been demonstrated to scale to 210K CPU cores on the ORNL
Cray XT5 Jaguar leadership achieving over 80% of peak performance for the
O(N7) part of the algorithm. The O(N6) component does not achieve this level of
scalability due to increased data movement and fewer available parallel tasks.
Hand-coded multilevel parallelism for selected coupled cluster algorithms
provides some extra scalability. In recent years the O(N7) compute intensive
kernels have been hand-coded in CUDA for GPU, and manually optimized and
extended with OpenMP directives to achieve performance on multicore platforms
such as the Xeon Phi. DFT has been demonstrated to scale to around 5-10K
CPU processors at NERSC and EMSL. The DFT capability will utilize
SCALAPACK to achieve the best parallel eigensolver performance possible. No
CUDA or OpenMP production code is available for the DFT module. Some
OpenMP work has been done at LBNL to get this code ready for the next
NERSC Cori system. The biggest bottleneck for DFT are the two-electron
integrals, consisting currently of short loops and lots of indirect and random
memory accesses. One would have to rewrite the two-electron integrals, or adopt
another integral code that has been optimized for OpenMP or CUDA to obtain
maximal performance. The plane wave module running the expensive exact
exchange has been demonstrated to scale to over 100K processors on the
NERSC Edison machine. Work is underway at LBNL and PNNL to make this part
of the code OpenMP ready. Additional work is underway at LBNL to develop
pipelined 3D-FFT approaches, with early results showing increased scaling.
Next-generation codes and algorithms need to be developed that can exploit the
drastically increasing concurrency and can handle increasingly expensive and
more dynamical data movement. Programming languages and runtime
schedulers that enable developers to express work concurrency and data
movement in a system agnostic way will be instrumental in developing efficient
scalable codes.
Co-design of the applications developers, computer scientists, and applied
mathematicians is critical in identifying the most suitable discretization and solver
techniques, in addition to developing simulation software that will take optimal
advantage of the exascale platforms in the 2025 timeframe to enable new
scientific discoveries.

