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NWChem is an open-source computational chemistry and materials software 
suite, covering a broad range of capabilities for chemistry and materials 
simulations. The code is primarily developed at PNNL, with pockets of 
development at LBNL and various university groups. Development at the labs is 
done by staff supported by postdocs, while the work at universities is done by 
postdocs and graduate students.  
NWChem consists of approximately 3 million lines of code, written in Fortran77 
and C. Slowly Fortran90 is being introduced into the code, and conversations are 
ongoing to enable cross language integration with object oriented languages 
such as C++. Data movement is done using one-sided put, get, and accumulate 
operations using the Global Arrays Toolkit. The Partitioned Global Address 
Space, or PGAS, is our main abstraction model used in the code, enabling 
coarse grained task parallelism. At LBNL we’re currently building an NWChem 
PGAS structure using LBNL’s GASNet, which eventually will give us access to 
languages such as UPC++ that allow more flexible work scheduling models. 
Single level parallelism in NWChem is achieved using a global task counter as a 
queue. While the NWChem architecture was designed to have well defined APIs, 
we have not seen wide use of developed algorithms. New codes and libraries are 
being developed that could be integrated with NWChem. However, many are 
developed using C++ or other truly object oriented codes, which makes 
integration with Fortran based codes rather complex. Within computational 
chemistry and materials there are no standardized APIs. Some attempts were 
made with the ASCR Common Component Architecture, which achieved some 
limited successes. 
The software runs on a large variety of platforms, from desktops and 
workstations to departmental clusters and supercomputers worldwide, including 
those at NERSC and the leadership computing facilities. Supporting a diverse set 
of hardware platforms affects the choice of algorithms, and because of the HPC 
focus affects performance on smaller systems. The PGAS data abstraction 
simplifies the portability across platforms amenable to this programming model. 
However, next generation architectures (both small clusters and 
supercomputers) will need a more flexible programming model that allows for 
multiple levels of data parallelism and task parallelism. 
The software suite contains a wide variety of scientific methods, ranging from 
high accuracy coupled cluster (CC) methods to Density Functional Theory (DFT) 
to classical Molecular Dynamics (MD). Coupled cluster algorithms have a 
computational complexity of O(N6-N7), and use block-sparse DGEMM-like 
kernels. In NWChem these complex to code kernels are computer-generated 
with the Tensor Contraction Engine software. Both DFT and CC methods use 
Gaussian basis functions to discretize the wave function of the Schrodinger 
equation. DFT formally has a computational complexity of O(N4), but in reality 



has a complexity that is O(N3) or lower depending on on large the system is and 
to what extend geometrical sparsity is utilized. The scalability of DFT is primarily 
limited by the eigensolvers used in the code. The sizes of matrices typically used 
in simulations limit the scalability of diagonalization to hundreds of processors. 
Alternative algorithms, such as orbitals free DFT or a DGEMM focused density 
purification scheme allow increased scalability of the the method. NWChem also 
contains a plane wave discretized capability with periodic boundary conditions to 
model the structure and dynamics of materials and condensed matter in general. 
The main computational kernels driving the performance of the plane wave 
capability are tall-skinny DGEMMs and global 3D-FFTs. NWChem also has a 
classical MD code, where the scalability is purely driven by network 
communication.  
The software has been demonstrated to scale to 210K CPU cores on the ORNL 
Cray XT5 Jaguar leadership achieving over 80% of peak performance for the 
O(N7) part of the algorithm. The O(N6) component does not achieve this level of 
scalability due to increased data movement and fewer available parallel tasks. 
Hand-coded multilevel parallelism for selected coupled cluster algorithms 
provides some extra scalability. In recent years the O(N7) compute intensive 
kernels have been hand-coded in CUDA for GPU, and manually optimized and 
extended with OpenMP directives to achieve performance on multicore platforms 
such as the Xeon Phi. DFT has been demonstrated to scale to around 5-10K 
CPU processors at NERSC and EMSL. The DFT capability will utilize 
SCALAPACK to achieve the best parallel eigensolver performance possible. No 
CUDA or OpenMP production code is available for the DFT module. Some 
OpenMP work has been done at LBNL to get this code ready for the next 
NERSC Cori system. The biggest bottleneck for DFT are the two-electron 
integrals, consisting currently of short loops and lots of indirect and random 
memory accesses. One would have to rewrite the two-electron integrals, or adopt 
another integral code that has been optimized for OpenMP or CUDA to obtain 
maximal performance. The plane wave module running the expensive exact 
exchange has been demonstrated to scale to over 100K processors on the 
NERSC Edison machine. Work is underway at LBNL and PNNL to make this part 
of the code OpenMP ready. Additional work is underway at LBNL to develop 
pipelined 3D-FFT approaches, with early results showing increased scaling. 
Next-generation codes and algorithms need to be developed that can exploit the 
drastically increasing concurrency and can handle increasingly expensive and 
more dynamical data movement. Programming languages and runtime 
schedulers that enable developers to express work concurrency and data 
movement in a system agnostic way will be instrumental in developing efficient 
scalable codes. 
Co-design of the applications developers, computer scientists, and applied 
mathematicians is critical in identifying the most suitable discretization and solver 
techniques, in addition to developing simulation software that will take optimal 
advantage of the exascale platforms in the 2025 timeframe to enable new 
scientific discoveries. 


