
BoxLib: A Software Framework for Parallel Block-Structured
AMR Applications

Ann Almgren, LBNL

The BoxLib software framework is the result of an ongoing multi-year multi-person

effort. The core of the development team is in the Center for Computational Sciences and
Engineering (CCSE) in the Computational Research Division (CRD) of LBNL. However, there
are additional contributors to BoxLib both within CRD and external to LBL. BoxLib is publicly
available on github but contributions to the main repo are only allowed by “known” developers.

BoxLib is designed to enable the building of massively parallel block-structured multiphysics

AMR applications. It contains extensive software support for structured-grid-based operations
as well as particles on adaptive hierarchical meshes. Multilevel multigrid solvers are included for
cell-based and node-based data. Parallelism is achieved using the distribution of grids to nodes
using MPI as well as on-node parallelism using OpenMP. Multiple time-subcycling modes are
supported for adaptive mesh simulations.

BoxLib contains core frameworks written in both C++ and Fortran90. The C++

framework calls a number of routines written in Fortran77. There are also python wrappers
included in the BoxLib repo but those do not cover the full functionality of the C++ or F90
versions. According to SLOCCount, as of August 20, 2015, the total number of lines of code in
each language in BoxLib itself are:

cpp: 120793 (45.39%)
f90: 96996 (36.45%)
fortran: 32876 (12.35%)
python: 5819 (2.19%)
ansic: 4184 (1.57%)
perl: 3100 (1.16%)
objc: 1324 (0.50%)
sh: 795 (0.30%)
yacc: 208 (0.08%)

BoxLib is the basis of a number of codes in active research use today. The most well-

known of these are CASTRO (compressible radiation-hydrodynamics code for astrophysics),
MAESTRO (low Mach number astrophysics code), LMC (low Mach number combustion code),
SMC (higher-order combustion code), PMAMR (porous media simulation code), and Nyx (N-
body plus hydrodynamics cosmology code).

BoxLib-based codes have been run on all of the ALCF and NERSC machines, and are run

on anywhere from 1 to 50K cores on a regular basis. Scaling runs have been done up to 200K
cores. Typical runs are probably mostly in the 4K core range though it depends on the
application. BoxLib itself does not depend on external libraries, though some of the application
codes do use external capabilities such as DVODE, hypre and PETSc.

Current development of BoxLib-based codes mostly targets multicore architectures,

although some of the BoxLib-based application codes use GPUs for specific routines. Typically
the architecture affects BoxLib-based codes in obvious ways. For example, the available

memory per core/node typically dictates the size of the grids into which each level of the domain
is decomposed. The speed of inter-node communication vs computation typically dictates the
relative cost of communication-intensive operations such as multigrid compared to computation-
intensive operations such as computing chemical/nuclear reactions or explicitly computing the
hydro advance. The mathematical algorithms do not change with the architectures though the
optimal parameter choices (grid sizes, choice of relaxation scheme in multigrid, etc) may be
different across different machines.

Our greatest concern in going to the exascale Is that the tools for development and

debugging keep pace with application development. It is also essential that developers of
software to be used at the exascale continue to find ways to bridge the gap between computer
science and applications expertise; neither a one-size-fits-all approach nor a different-hammer-
for-every-nail approach will be successful in the long run.

