
Levesque – A Better way to do OpenMP

Code developers have a tremendous challenge ahead of them if they hope to achieve
a reasonable percentage of peak performance on the coming generation of
supercomputers (More than 1%). There are at least three major issues facing
developers

1) Obtaining a high utilization of available memory bandwidth
2) Implementing efficient parallelism on the node
3) Vectorizing computationally intensive loops

Unfortunately 2 and 3 will only be successful if 1 is addressed reasonably well.
Consider the following table that shows four familiar kernels and how their
performance is dependent upon the amount of cache reuse they can achieve.

 Performance Versus location of data (MFLOPS)

Level 1
Cache

Level 2
Cache

Level 3
Cache Memory

Triad - Vector 4255 2033 1800 1800
Triad - Scalar 3202 2198 1960 1960
Himeno - Vector 684 1207 1627 2190
Himeno-Scalar 475 772 1930 2980
Mini-ghost-Vector 1442 2570 3404 3400
Mini-ghost-Scalar 765 2062 3971 6250
Matrix Multiply-Vector 10194 12877 7800 7800
Matrix Multiply-Scalar 5605 4158 6190 6190

This table illustrates the major obstacle to high performance. Over the past ten
years the ratio of flops to memory bandwidth has significantly decreased. Without
the memory bandwidth to support a high computational rate, threading and
vectorization will only be marginally performing.

Threading on the node

When developers address threading on the node a majority of them consider the
traditional loop based parallel regions. This approach has many problems that end
up significantly degrading performance:

1) NUMA effects
2) Granularity versus load balancing issues
3) Synchronization issues

A recent development by members of the Danish Meteorological Institute shows a
extremely effective approach that addresses all of the aforementioned issues. The
principal utilization of OpenMP is explained as follows:

Thread parallelism must be SPMD based (like MPI) and not loop based to minimize
synchronization, barriers surrounding MPI halo swaps only.

More detailed explanation can be found in presentation given at ECMWF’s
workshop on scalability. Refactoring for Xeon Phi Jacob Weismann Poulsen, DMI

• On NUMA architectures proper NUMA-layout for all variables is important.
• Consistent loop structures and consistent data layout and usage throughout

the whole code.
• Proper balancing is very important at scale (Amdahl). It can be done either

offline (exact) or online (heuristic).
• Tuning options for balancing: Linear regression based on profiles, cf. DMI

technical report tr12-20.

That approach consists of introducing a high level OpenMP parallel region. Within
this parallel region individual threads allocate the arrays to address NUMA issues.
Scoping of variables is achieved by adherence to the Fortran convention. As with
MPI, care must to taken when threads need to communicate with each other and
synchronization introduced to handle communication between MPI tasks. The
interesting part of this approach is the work distribution routine, which is called
prior to the major computational loops. The work distribution routine can as
sophisticated as needed to address load-balancing issues. With DMI’s particular
application, the simulation of the ocean surrounding Denmark, the grid is extremely
irregular and by employing analysis of the grid (which doesn’t change during the
runtime) impressive load balancing is achieved.
This approach also minimizes the synchronization and results in high granularity
for each of the threads. The implementation of the approach into an existing all-MPI
application is significantly less intrusive than placing OpenMP directives on
individual computation looping structures; however, it does require a deep
understanding of the application and requirements for synchronizing between the
threads within a MPI task.
Using this approach Poulsen was able to show scaling up to 240 threads on Knight’s
Corner. Overall Poulsen achieved better performance on the KNC than a two socket
Ivy Bridge system.

