
HPCOR&2014+
System Configuration (D1SA)

Co-Chairs:

Clay England (OLCF) &
Jason Hick (NERSC)

1

HPCOR: Software Architecture for Portability and
Performance

Steering Committee
¤  Katherine Riley, ANL, Chair
¤  Katie Antypas, LBNL
¤  Scott Futral, LLNL
¤  Richard Gerber, LBNL
¤  Dave Goodwin, SC
¤  Barbara Helland, SC
¤  Thuc Hoang, NNSA
¤  Paul Messina, ANL
¤  Joel Stevenson, SNL
¤  Tjerk Straatsma, ORNL
¤  Tim Williams, ANL
¤  Cornell Wright, LANL

¤  Chel Lancaster, ANL
¤  Thanks to Deneise Terry, ORAU &

Renee Plzak, ANL

1

Why We Are Here in One Slide

¤  Identify current practices for scientific software
architecture and development that increase
portability and performance
¥  What has worked?
¥  What niche solutions are compelling?
¥  What has not worked?
¥  What opportunities are there?

¤ Consider the impact of those practices over the
next ten years

2

Why Are We Asking These Questions?

¤  Architectural diversity already exists
¤  Complexity of programming is increasing
¤  New science use models emerging

As a group, we can:
¤  Provide input on the real challenges of

portable performance

¤  Provide guidance as developers are

changing codes

3

Science	

Accessible	
and	 growing	
compute	
capabili5es	

Reliable	 &	
Predictable	
Programming	
Environment	

 ASCR Computing Upgrades At a Glance
System'a)ributes' NERSC''

Now'
OLCF'
Now' ALCF'Now' NERSC'Upgrade' OLCF'

Upgrade' ALCF'Upgrade'

Name
Planned Installation Edison TITAN MIRA Cori

2016
Summit

2017-2018 Theta Aurora
2018-2019

System peak (PF) 2.6 27 10 > 30 150 >8.5 180

Peak Power (MW) 2 9 4.8 < 3.7 10 1.7 13

Total system memory 357 TB 710TB 768TB

~1 PB DDR4 +
High Bandwidth
Memory (HBM)

+1.5PB persistent
memory

> 1.74 PB
DDR4 + HBM

+ 2.8 PB
persistent
memory

>480 TB DDR4 +
High Bandwidth
Memory (HBM)

> 7 PB High
Bandwidth On-

Package Memory
Local Memory and
Persistent Memory

Node performance
(TF) 0.460 1.452 0.204 > 3 > 40 > 3 > 17 times Mira

Node processors Intel Ivy
Bridge

AMD
Opteron
Nvidia
Kepler

64-bit
PowerPC

A2

Intel Knights
Landing many

core CPUs
Intel Haswell CPU

in data partition

Multiple IBM
Power9 CPUs

&
multiple Nvidia
Voltas GPUS

2nd gen Intel Xeon
Phi processor
(code name

Knights Landing)

3rd gen Intel Xeon
Phi processor (code
name Knights Hill)

System size (nodes) 5,600
nodes

18,688
nodes 49,152

9,300 nodes
1,900 nodes in
data partition

~3,500 nodes >2,500 nodes >50,000 nodes

System Interconnect Aries Gemini 5D Torus Aries Dual Rail
EDR-IB Aries

2nd Generation Intel
Omni-Path

Architecture

File System
7.6 PB

168 GB/
s, Lustre®

32 PB
1 TB/s,
Lustre®

26 PB
300 GB/s
GPFS™

28 PB
744 GB/s
Lustre®

120 PB
1 TB/s

GPFS™

10PB, 210 GB/s
Lustre initial

150 PB
1 TB/s
Lustre®

 ASCR Computing Upgrades At a Glance

Name/
Planned
Installation

Cielo	 	 	 	 	 	 	 	 	 	 	
Now	

Sequoia	 	 	 	 	 	
Now	

Trinity	 	 	 	 	 	 	 	 	
2015	 -‐	 2016	

Sierra	 	 	 	 	 	 	 	 	 	 	 	
Q4FY18	

Crossroads	 	
Q1FY21	

System peak (PF) 1.4 20 40 150 TBD

Peak Power (MW) <4.4
	

~9.6 ~9.1 ~10 TBD

System memory per
node

32 GB DDR3
	

16 GB 128 GB DDR4
Haswell & 96 GB
DDR4 Xeon Phi

>512 GB (High
Bandwidth memory

and DDR4)

TBD

Node performance
(TF)

0.154 peak 0.205 peak

1.176 Haswell & >3
Xeon Phi

>40 TBD

Node processors ~143,104 cores
AMD Opteron

Magny-Cours (dual-
socket, eight cores/

socket)

 ~1,572,864 cores
IBM PowerPC A2
(16 cores/node)

Intel Haswell (dual-
socket, sixteen
cores/socket) &

Intel Xeon Phi (72
cores)

Multiple IBM
Power9 CPUs &

multiple Nvidia Volta
GPUs

TBD

System size (nodes) ~8,944 ~98,304 ~9436 Haswell
&

 ~9500 Xeon Phi

~3,500 TBD

System
Interconnect

Cray Gemini (3D
Torus)

IBM BG/Q (5D
Torus)

Cray Aries
(Dragonfly)

Dual Rail EDR-IB TBD

File System 10 PB, >160 GB/s,
Lustre®

50 PB, ~850 GB/s,
Lustre®

78 PB, ~1.6 TB/s,
Lustre®

120 PB, 1 TB/s,
GPFS™

TBD

NNSA	 ASC	 Systems	

We Have the Software Big Picture

¤  We know a lot for next couple systems
¥  Bigger nodes. MPI+X : [OpenMP, OpenACC, MPI]
¥  Vectorization increases importance
¥  Data movement & locality harder
¥  (and more)

¤  But what software environment should we build for them?
¥  Are there environments that will improve portable performance?
¥  Evolve scientific codes forward
¥  Make room for discontinuous solutions but not require them

¤  To do all of that – What worked before?
¥  We all think we know. Let’s talk about it.

6

Who Is Here?

¤  Codes from a few thousand to
millions

¤  Teams of 1 to ~10 developers
¤  Co-located to geographically

diverse developers
¤  Pro-library to anti-library
¤  >20 year old code to new-ish
¤  Fortan, C, C++, Python, etc
¤  Most running on biggest

machines today
¤  Most are ‘big’ applications,

‘canonical’ use models

7

Breakdown	 of	 A>endees	 	

NNSA$
39%$

SC$
22%$

ASCR$
Facili0es$
25%$

University$
9%$

Other$
4%$

Industry$
1%$

Breakout Overview

¤  Abstractions
¥  Where do the scientific codes of today draw the line for abstracting

parallelism?

¤  Tools & Libraries
¥  What components of today’s libraries and tools are used in scientific

codes today and why?

¤  Software engineering
¥  How do you exact substantial changes to scientific codes? Do you?

8

Breakout 1: Application Architecture

¤  Where are the abstractions in applications?
¤  Data Structures/Data Movement

¥  Are there reliable rules for data structures that can increase the chance
of portability? Are they consistent with performance?

¥  What are good software architecture practices to facilitate moving data
between memory hierarchies?

¤  Parallelism/Abstractions
¥  How high level does parallel abstraction need to be to facilitate moving

between diverse architectures?

9

NNSA$
25%$

SC$
24%$

ASCR$
Facili0es$
39%$

University$
12%$

Note:	 These	 are	 coupled	 topics.	
Conversa5ons	 likely	 to	 heavily	 overlap.	

Breakout 1: Quick summary of white papers

¤  Practices
¥  Use two layers of abstraction, one for between nodes (typically MPI)

and one for on-node parallelism. The on-node parallelism layer can be
swapped for different architectures

¥  Portability by maintaining two branches of source code!! Very common
answer...

¥  Use libraries

¤  Niche Practices
¥  Use future C++ standard language features for portability
¥  Avoid dependencies on outside libraries
¥  Using frameworks like RAJA and KOKKOS

Breakout 1: Quick summary of white papers

¤  Failures
¥  Using vendor proprietary code and libraries
¥  OpenCL
¥  Ignoring GPUs and running only on CPUs for portability
¥  Open source is a barrier for adoption by industry, unless accompanied by

a Red Hat support model
¥  No funding for maintenance

¤  Opportunities
¥  Training application engineers, concerns about career opportunities for

staff with cross over expertise.
¥  Develop tools that will enable portability
¥  OpenMP 4.0 – though not demonstrated yet
¥  Community codes reduce the barriers for entry into HPC and provide a

reliable way to achieve scientific results

Breakout 2: Libraries and Tools

¤  Libraries
¥  What are the most commonly used parts to libraries & tools and

why are they used?
¥  What practices exist that have facilitated using libraries to

increase portability and performance? What is needed?
¥  Practices for supporting sustainable libraries
¥  What tools will be needed

to help application
developers? What is
lacking? (Memory
management, thread
placement, etc)

12

NNSA$
42%$

SC$
8%$

ASCR$
Facili0es$
38%$

University$
4%$ Other$

8%$

Breakout 2: Libraries and Tools Quick Summary

¤  Codes appear to rely heavily on libraries.
¤  The list of libraries and tools is large and diverse.

¥  Solvers/linear algebra/utility/math: HYPRE, PETSc, BLAS, pBLAS,
LAPACK, ScaLAPACK, Trilinos, ESSL, MKL, boost, SuperLU, MUMPS,
DVODE, Chombo

¥  Portability/utility/performance: Kokkos, RAJA
¥  Programming: Global Arrays, LLVM/Clang + Charm++, USQCD tools,

ParMETIS, SCOTCH, paramesh + common ones…
¥  I/O: Silo, HDF5, Adios, DARSHAN, libXML
¥  Development/management: make, Cmake, Cdash, TriBITS, spack
¥  Profiling/code dev: gcov, gprof, valgrind, vtune, HPM, nvvp
¥  FFT: fftw
¥  Debuggers: dgb, totalview, DDT, STAT
¥  Workflow/utility: Python,

¤  Are these all sustainable? Too many? Too few?
¤  Are libraries interoperating well enough? Scaling enough?

13

Breakout 3: Software Engineering

¤  Software Engineering best practices
¥  How are software engineering practices unique on HPC platforms

like the LCFs and NNSA systems?
¥  What engineering practices are required to develop and maintain

a portably performant application code?
¥  What software engineering best practices exist today? What are

you using?
¤  Best practices

engineering large changes
to existing codes
¥  How do you advance

scientific applications with a
lot of inertia?

¥  How do you engineer large
changes to scientific codes
like adding the X to MPI+X?

14

NNSA$
35%$

SC$
24%$

ASCR$
Facili1es$
35%$

Industry$
6%$

Software Engineering Rubric

15

¤  Community codes, open source
¤  O(104-107) lines of code
¤  Dev team O(10) people
¤  MPI_THREAD_MULTIPLE
¤  Getting high fraction of

available memory bandwidth
important

¤  Parallelism within the node
¥  Kokkos
¥  RAJA

¤  Loop-OpenMP alternative
¥  MPI ranks intranode
¥  SPMD-type OpenMP

¤  Interoperable programming
models

¤  Automated builds and testing
¥  Performance and extreme

scalability testing

¤  Exascale fears:
¥  Lose/unable to hire staff for

dev and maint.
¡  Transient developers such as

postdocs

¥  Dev tools lacking
¡  Compilers, e.g. C++11 features

¥  Expressing work concurrency
and data movement portably

¥  Multilevel memory hierarchies
¥  Resiliency at scale

Keep Scope Targeted

¤  We are not debating the future platforms
¤  Not focusing on the domain science
¤  Identify what has worked even if it might not keep working

¥  Is there a nugget about why it worked?

¤  Largest scale of supercomputers
¥  Identify when approach won’t be applicable to smaller systems

Big chance for science application developers to speak on
the programming environment

16

17

DOE High Performance Computing Operational Review (HPCOR) on Scientific Software
Architecture for Portability and Performance

September 15-17, 2015

Agenda

 Tuesday, September 15, 2015

 7:00am - 8:00am Continental Breakfast and Registration General Sessions Room (Salon DE)

8:00am - 8:40am Welcome, Charge Discussion, and Where We Are Katherine Riley
Argonne National Laboratory

8:40am - 9:25am Plenary: Real Life Experience 1 David Dixon
The University of Alabama

9:25am - 10:10am Plenary: Real Life Experience 2 Adam Kunen
Lawrence Livermore National Laboratory

10:10am - 10:30am Break

10:30am - 11:15am Plenary: Real Life Experience 3 James Phillips
University of Illinois at Urbana-Champaign

11:15am - 11:30am Comments from ASCR & NNSA on efforts on Performance
Portability

Barbara Helland
U.S. Department of Energy
Thuc Hoang
National Nuclear Security Administration

11:30am - 12:00pm Discussion

12:00am - 1:00pm
Working Lunch:
Extreme-scale Software Productivity, Engineering and
Methodologies

Mike Heroux (Sandia National Laboratories)
Lois Curfman McInnes (Argonne National
Laboratory)
ASCR Co-Leads
IDEAS Project

1:00pm - 2:30pm Breakouts

Breakout 1: Applications Architecture
x Data Structures/Data Movement
x Parallelism/Abstractions
x Frameworks

Leads: Katie Antypas and Tjerk Straatsma

Room: Salon DE (General Sessions)

Breakout 2: Tools and Libraries

x Current state of library use at facilities and why
x Libraries
x Tools
x Frameworks

Leads: Richard Gerber and Scott Futral

Room: Salon AB

Breakout 3: Software Engineering

x Software Engineering practices
x Advance applications with a lot of inertia
x Advance applications to new programming model

Leads: Tim Williams and Joel Stevenson

Lakeside Ballroom

2:30pm - 3:00pm Break

3:00pm - 4:30pm Breakouts Continued

4:30pm - 5:30pm

Plenary: Review of the day – no slides

x Breakout 1 – Quick Summary – 10 mins
x Breakout 2 – Quick Summary – 10 mins
x Breakout 3 – Quick Summary – 10 mins
x Global Sync Up and Q/A – 15 mins

General Sessions Room (Salon DE)

