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Scope of Research

 Micromagnetics

 Spin polarized transport

 Magnetic photonic crystals.

 Small wire structures and their magneto- electric
properties.
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Outline

Magnetic photonic crystals.

 A.C. circuit theory for wire structures.
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Magnetic Photonic Crystal (MPC)

 Yin-Yang reflection: Analog of the Quantized Hall Effect, 
mediated by magnetic surface plasmon states

 Magnetic surface plasmon bands: Tuning of the photonic 
band.

 Pseudopotential: Index matched negative refraction with 
no metallic wires.
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Electromagnetic (EM) scattering 

phase shift between magnetic and 

nonmagnetic cylinders are 

different.
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Rapidly changing scattering phase 

shift off a magnetic cylinder 

 In the middle panel, at the 

dashed line, phase shift 1

for angular momentum n=1 

is near the resonance value 

of /2 and is rapidly 

changing.

 -11
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Scattering phase shift from a 

nonmagnetic cylinder

No rapid oscillation of 

phase shift is observed for 

nonmagnetic cylinders.
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Yin Yang Reflection: 

Tunable “one-way“ subwavelength 

waveguide with superflow properties

Quantized Hall effect and 

magnetic-plasmonics: [JPCM 19, 

406233 (2007) and unpublished]
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Yin-Yang Reflection

 Multiple scattering used.

 For a line source at 1.5 a in 

front of an array of YIG rods. 

a=8mm, 5GHz.

 (a), (b) are for E, (b) is just 

the amplitude

 (c) is the Poynting vector

 (d) is at a different frequency.
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Probing states of macroscopic 

circulations

The eigenstates inside the 

MPC has contributions 

from the sum of all the 

small “eddies” .
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Diffraction limit of 

waveguides:Plasmonics

 kx
2 = 2 /c2 - 2 /d2 .

 kx is imaginary if d < 

c/

EM waves carried by 

surface plasmonics is 

suggested as a way 

to bypass this

d kx
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Magnetic surface plasmon bands

[PRB 78, 155101 (2008)]

 for an array of ferrite 

cylinders (Ni-Zn) (r=3.3mm, 

a=12mm)

  of the cylinder (not the 

average  ) = -1

 Physically, this is like a state 

of coupled surface plasmon.

 Band is flat!

 Similar to the surface 

plasmon band first seen by 

Maraduddin et al.
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One-way waveguide

Magnetizations on the 

two sides are opposite.

 (a) electric field, (b) 

Poynting vector.

 Source is at x/a= -5.5

Wave does not go left!
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“Superflow” properties

 (a) E field with no 

defects.

 (b)  Close-packed 

array of cylinders.

 (c) Random position.

 (d) Random size.

 (e) Poynting vector in 

the channel remains 

unchanged!
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Subwavelength guides, benders 

and splitters

Width=wavelength/30

 (b) Top magnetization 

= that of lower right

 (c) Left magnetization 

opposite that on the 

right.

 (d) Transmission 

efficiency =1. 
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Magnetic surface plasmon 

bands

Surface Plasmon : =-1

Magnetic Surface Plasmon: =-1 

(Duke group)
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Magnetic surface plasmon bands

[PRB 78, 155101 (2008)]

 for an array of ferrite 

cylinders (Ni-Zn) (r=3.3mm, 

a=12mm)

  of the cylinder (not the 

average  ) = -1

 Physically, this is like a state 

of coupled surface plasmon.

 Band is flat!

 Similar to the surface 

plasmon band first seen by 

Maraduddin et al.
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Magnetic surface plasmon bands

[PRB 78, 155101 (2008) ]



DOE EPSCOR Meeting, 2009

Resonance bands:

Photonic behavior is governed entirely by the 
scattering phase shifts.

 Scattering phase shift of the cylinder =/2 in the 
long wavelength limit at both SP and MSP 
resonance frequencies.

 Same phase shifts can also be produced by other 
resonances, for example, a Mie scattering 
resonance.

 [arXiv: 0808-1554v2 (2008)]



DOE EPSCOR Meeting, 2009

Low loss, indexed match negative refracting 

material with no “<0” metallic components.

Motivated by the CPA calculation of :

[1] Y. Wu, J. S. Li, Z. Q. Zhang, and C. T. Chan, Phys. Rev. B 74, 

085111 (2006); 

[2] X. H. Hu, C. T. Chan, J. Zi, M. Li and K. M. Ho, PRL 96, 223901 

(2006).

Pseodopotential:
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Previous system: negative  and  for 

negative refraction

Metallic wires for 

negative ;

 Split rings for .
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Wedge  and of ferrite rods. Index matched, 

No wires, less damping.

 PRL 101, 157401 

(2008). 

 Index and impedance 

matched, no reflection; 

==-1.

 (a), (c); H0=500 Oe;

 (b), (d), H0=475 Oe.
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Physics

Negative  from engineering of the scattering 

phase shift. Just like in the pseudo-potential 

idea in electronic band structure. Negative 

from the spin wave resonance.
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Nanowire structures: 

Systematic approach 

develpoed
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Example: a straight wire

 Studied by Van 
Vleck,…

 In the thin wire limit, 
the resonance 
wavelength is given by

 r=2L/n where n is an 
integer, L is the length 
of the wire.

L
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Another example: split rings

 Topologically 
equivalent to a 
straight wire;

 Can be analytically 
solved in the quasi-
static limit.
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Giant “Faraday effect” at optical 

frequencies through helixes
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Physics of wire structures

Systematic approach in the quasi-

static limit
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How to generalize Kirchoff law to 

finite frequencies?

For D. C. we have the potential at each junction .

For A.C. introduce localized electric fields e at 
ends and junctions.

Motivation: currents are now spatially varying. 

   /  t = -r ¢ j.

The spatial derivative of the current does NOT 
conserve at a junction, charges and localized fields 
are generated.  
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Split ring resonance frequency can 

be calculated analytically 

 I()=m exp(im) Im

 Impedence:   Xm=i (Lm-

m2/2 Cm) +r . 

 Circuit equation: Xm Im = 

Em + e

 Boundary condition: 

I(0)=mIm=0.

 e =-m Em /Xm /[ m1 / Xm ]

a
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Split ring resonance frequency can 

be calculated analytically 

 I()=m exp(im) Im

 Impedence:   Xm=i (Lm-

m2/2 Cm) +r . 

 e =-m Em /Xm /[ m1 / 

Xm ]             

For resonance, set Em=0

 m1 / Xm (r) =0            

a
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Many interesting results

Can design sub-sub-wavelength resonantors so 

that the resonant wavelength is more than a 

thousand times its size.

For an applied field of 1 V/m, at resonance, the 

field at the end can be near the dielectric 

breakdown field of 3x 10^6 V/m.

Can design structures with faraday rotation that 

is 1000 times bigger than TGG. 
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Circuit equation can be exactly solved for 

the resonance
[JAP 104, 034305 (2008)]

Eigenvalue equation for the resonance 
frequency: 

1 +m=1
1 2(L0

2-irc)/(Lm
2 -m2/Cm-irc) =0.

 rc is the conductor resistance.
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For narrow wires, all L, C are the 

same; resonance wavelength the 

same as a straight wire
 eigenvalue equation becomes 

1 +m=1
1 2 2/(2 -m2 u

2 ) =0.

 cot (/u)=0

 spectrum for the magnetic modes is given by 

(n+1/2)u where u=1/(L0C1)
0.5

2 2 2

1

cot( ) 1 2 /( )
m

k k k k m 




  
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Resonance frequency [u=c/R] can 

be very small!
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Giant Faraday rotation with 

metallic helixes
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