X-ray microscopy

Janos Kirz

Advanced Light Source
Lawrence Berkeley National Laboratory

EPSCoR Program review 7/21/2009



- Tools to visualize the nanoworld

* Resolution limited by wavelength

» Electron microscopes
- Limited thickness

- Limited contrast in unstained biological
samples

- X-rays
- Short wavelength,

- Penetrating

- Absorption edges provide contrast
- "water window"; XANES - chemical contrast
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History

- W. C. Rontgen 1895

- lenses and mirrors don't work
» A. Einstein 1918

- Index of refraction <1.0 :

- Grazing incidence mirrors

* P. Kirkpatrick 1949

- Grazing incidence mirrors
- Kirkpatrick-Baez focusing
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Zone plates

- Diffractive optics: radially varied
grating spacing ‘

- Path difference through neighboring [
open zones increases by multiple of 2 |l

- In first diffraction order: i

- Largest diffraction angle is given by
outermost (finest) zone width éry as
0=2/(25ry)

- Rayleigh resolution is
5,70.611/(6)=1.22 dry,
+ Zones must be positioned to ~1/3
width over diameter

- (10 nm in 100 um, or 1:10%)
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Monochromator

Undulator

Frasnel zone-
plate lens

Computer




- Scan specimen (or probe) mechanically
- Collect image pixel by pixel

- Detect

- transmitted x-rays (STXM),

- fluorescence (SFM)

- photoelectrons (SPEM)

- visible light (SLXM)
+ Size of microprobe determines resolution
* Brightness limited

- Scan parameters determine object areaq,
“magnification”
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Spectromicroscopy by image stacks 1999 N

» Acquire sequence of images over XANES
spectral region; automatically aligh using
Fourier cross-correlations; extract
spectra. -

Images at N=150
energies are
common.

IDL-based
analysis tools
are made
available

\@ .
/QQQ Jacobsen et al. , J. Microscopy

197,173 (2000)
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LIGHT SOURCE

+ X.Zhang, et al. J.
Structural Biology 116, 335
(1996)

- DNA packing in sperm
mediated by protamine I
and protamine II; fraction
of protamine IT can vary
from 0% to 67% among
several species S AN )

- Bulk measurements: R -I_:-:h-ra'sf energy (V)
compromised by immature
or arrested spermatids

- Conclusion: protamine IT
replaces protamine I,
rather than binding to
protamine I complex Image at20056V  Protein map DNA map

m 2 um Bull sperm
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Present

* Microscopes sprouting at all SR
sources

* 5 Microscopes at ALS: most
oversubscribed
* Going from 2D to 3D:
- Spectromicroscopy X,y E
- Tomography XY,z
- Time resolved microscopy x.,y,t
* Radiation damage can be a problem
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BERKELEY LAB

River biofilm cultured in river water; spiked with 10 ppm NiCl,for 24 hr prior to harvesting wet cell.
Mn*2 Mn*3 Mn*4 Mn Fe Ni

S Mt
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biofilm
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”\ Current-Driven Domain Wall Motion in Nanowires
A Step Toward Magnetic Data Storage without Rotating Disks

esent, Snat®

contact pads

ferromagnetic ring

— A magnetic domain wall (DW)—the boundary
H " between regions of different magnetic
ext orientations—is created in a 20nm x 1000nm

ferromagnetic permalloy (NigyFe,) ring through
the application of a magnetic field (H,,.)
between two contact pads. One nanosecond
short pulses are injected into the ring to move the
DW.

-
<

Distance moved
by domain wall

before after

conduction domain wall

electron (s) Magnetic soft x-ray microscopy using the CXRO XM-1 x-ray

1 > microscope allows the imaging of domain wall motion with a
spatial resolution as high as 15 nm. Images captured before
— —p —p —p / T V\ +— ¢— — ¢ (a) and after (b) the current pulse injection are used the
localized

measure the speed of the motion, which was 110m/s, in

— agreement with theoretical estimates.

©
A “spin torque” exerted by the current pulse pushes the
domain wall along the wire.

Ref: G. Meier, M. Bolte, R. Eiselt, B. Kriiger, D.-H. Kim., P. Fischer, Physical Review Letters 98, 187202 (2007)
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I. McNulty et al.
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CO, sequestration in the ocean seems to be limited by the
availability of Fe (necessary for Chlorophyll production).

CO, sequestration by Fe seeding

B. Twining
*Fe is concentrated in/near the chloroplasts (epi) -3816 (2003).
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A SHARPER FOCUS FOR SOFT X-RAYS

Center for X-ray Optics, LBNL

T
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Overlay technique with separate e- Soft x-ray images taken with the CXRO XM-1 full-field
beam lithography patterns for odd and Imaging microscope at the ALS (Beamline 6.1.2).
even zones achieves 30-nm zone Comparison of images of a 15.1-nm test object with
period (center-to-center) with high the previous 25-nm (left) and the new 15-nm (right)
quality (e.g., placement accuracy of zone plates illustrates the improved spatial resolution
1.7 nm). achievable.

A D V A N C E D L I G H T S O U R C E




How far can you go?

* NSLS IT specification: 1 nm
resolution

» (What is the scientific motivation?)
» Can you get there?
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ALS Where is the resolution limit for x-ray focusing? -
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Calculations for 1D MLL
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- Resolution approaching 1 nm feasible, E 40f ]
- Diffraction efficie 2D) > 50% g 30;' '
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1 10
- Beyond: Outermost zone width (nm)

-What is the effect of Borrman-Fan on

Phase? Kang et. al, PRL, 96, 127401 (2006)
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ALE) Multilayer Laue Lens - Concept -l

LIGHT SOURCE

* Deposit varied depth-graded multilayer on | Material: WSi,/Si
plane substrate (thinnest structures first) N
* Section to 5-20 um depth ;?Zinizg?iglznum
» Assemble into a linear MLL , o

_ . d-spacing: 10 — 58 nm
» Assemble two linear MLL’s into a 2D MLL. |

Adjust
tilt angle

Graded- E
spacing E\
multilayer \

Substrate

Deposited multilayer

1D MLL 2D MLL

Cross-divisional team (MSD/CNM/XFD)
capitalizes on strengths of ANL science

and facilities —
The 43rd Anniversary Sl

2005 R&D 100 Award
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Sample A:  dry =15 nm

O SampleA |

Sample B, C: dry, = 10 nm Lol
O Sample B
0.8+ 1st order O Sample C

Gaussian fit |

NA-limited resolution:

Sample A: 57 nm (27% NA)

0.6 fs000 0 5000 10000 15000 2@
AX (nm)

30 nm

Intensity (normalized)

0.4
Sample B: 44 nm (23% NA) 0.2
Sample C: 24 nm (41% NA) 0.0
150 -100 50 0 50 100 150
AX (nm)
Local Efﬁm’er:cy at Th\'c'kness: 13,'5 um; drN': 15 nm, Local Effic(fﬁcy at TTNCWWESSYZ 125 U:“; drN f
Photon Energy: 19.5 keV

Measured Resolution: 30 nm

Diffraction Efficiency: 44%

Kang et. al, PRL, Apr., 2006




Get rid of optics!
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Use a computer to phase the scattered light, rather than a lens

A lens recombines
the scattered rays

with correct

\\/ / phases to give the
image

Prior knowledge
about object
K—’ /
_,' \ 6

1 An algorithm finds
Resolution: 0= A/siné

‘ Algorithm the phases that are
consistent with

measurements and
1 prior knowledge

L 4

Idea of David Sayre




‘Lenses do it, mirrors do it
- but they use the full complex amplitudel!
*Recording the diffraction /ntensity leads to the

lll

“phase problem

*Holographers do it - but they mix in a reference
wave, need very high resolution detector or
similar precision apparatus

‘Crystallographers do it - but they use MAD,
isomorphous replacement, or other tricks
(plus the amplification of many repeats)



Imaging without lenses

« Avoid losses of lens efficiency and transfer function

* Must phase the diffraction intensities

Real space

Real space: finite support
(or other constraints) 0

S
support

Fourier space

Real space constraints:

finite support, positivity... I

Starting point: measured
Fourier magnitudes,
random phases

Revised result in
N real space

i Present result in

N\
. Re-apply support
N constraint efc.

N Present result in
hR real space

‘ Revised result in

Fourier space: magnitudes
known, but phases are
not

v

Fourier space

Re-insert measured
magntidues

Fourier space

Phasing algorithms: Feinup, Opt. Lett. 3, 27
(1978); Elser, JOSA A 20, 40 (2003); and

others. First x-ray demonstration: Miao et
al., Nature 400, 342 (1999). 26



First experimental demonstration —N

2=1.8 nm

39:; xoray Low angle data
ITTraction '

pattern From optical

micrograph

Scanning Image

electron reconstructed from

mncrogmph diffraction pattern

of object (0,,0x COrresponds to

80 nm). Assumed
positivity
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Yeast cell: 2.5 micron thick, unstained freeze-dried, at 750 eV
Total dose ~ 108 Gray (room temperature)

Oversampling is about 5 in each dimension

Half period (nm)
100 50 30 20 10

Iyata (@rb. units)

10° 1 1 1 | 1
1 2 5 10 20 50 100

Spatial frequency f(um)
David Shapiro, Stony Brook, now at ALS



Pierre Thibault



Gold-labeled yeast

1.8 nm gold, silver-enhanced, freeze-dried: Johanna Nelson, Stony Brook.
Propagation of complex reconstructed wave to “focus” on different planes.

bf +460 nm




Gold-labeled yeast resolution: ~13
nm

Phase retrieval transfer function (PRTF) measures reproducibility of phasing
versus length scale; can compare with modulation transfer function (MTF)

half-period (nm)
50 30 20 10

1.0[

PRTF

0-0 I L L L 1 L a1l
1 10
spatial frequency (1/um)




Frozen hydrated yeast

X. Huang et al., Stony
Brook/ALS

See also E. Lima et al.
Images of Deinococcus
radiodurans bacteria at
ESRF.

0.95r

"Cezg.
L . . . d/‘/’ed
| D. Shapiro, PhD dissertation

0.90 |

PRI |

Frozen hydrated

1_00-——0— ——————— e — - O o000 — — — —

Fractional change in feature siz

108 109

Dose (Gray)




AN I Hard X-ray SASE Free Electron Lasers

ADVANCED BERKELEY LAB
LIGHT SOURCE

LINAC COHERENT LIGHT SOURCE -
B
2009
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» Given n electrons radiating (~10°)
» Given N magnet periods (~102)

» Bend magnet output ~n
* Wiggler output ~ nN
» Undulator output ~ nN?

* FEL output ~ n2N?




What can FEL's do for X-ray

microscopy?

* Fully coherent, very high peak power

» Structural biology using crystals

* The challenge of membrane proteins

+ Single shot turns molecule into plasma
» Capture structure fast!

* Many identical specimens




Coulomb explosion of Lysozyme

L) * L] ¢ *
50fs , * ¢ »
3x10!2 photons/100 gm spot 2 -
12 keV . *

Radiation damage o B .
interferes with atomic | ® . *
scattering factors and s °
. - L]
atomic positions . . °
L
Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. Hajdu, J. 42000) I\htug@ 486, 752-757 > . » "
= . o %o . » ‘ ’ L] ®
L ] a . » - - e a o



One pulse, one measurement P
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Particle injection

XFEL pulse

- - -

- Classification Averaging Orientation Reconstruction -
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Incident FEL pulse:
30 fs, 32 nm,
3 x 1013 W cm-2

H. Chapman, J. Hajdu et al.




ALS

ADVANCED
LIGHT SOURCE

diffraction
pattern from
first pulse

reconstructed
picture

lpm

diffraction
pattern from
second pulse

TEM picture

o from original

structure

_ H Chaiman J. Haldu et al.



Conclusions

+ X-ray microscopes complement other
forms of microscopy

* Rapidly evolving field with many
applications, and much potential
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