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The situation

• People are everywhere and observe their 
environment 

• When they’re interconnected and report 
their findings, we have a distributed 
‘sensor’ network 
– FaceBook, Twitter, MySpace, SMS/texting…

• We can track information flow on the non-
private portion of the network to determine 
what is going on 



Potential uses

• Catastrophes: Situation monitoring and 
response planning 

• Anomaly Detection: Recognizing 
problems before they occur 

• Human Trafficking: Tracking down 
perpetrators



Twitter 

• Registering:
– It’s free 
– You choose a name 

• Using Twitter: 
– Twitter users write ‘tweets’ (text messages, shorter 

than 140 characters) using a computer or cellphone
– Anyone can read these messages 
– You can attach yourself to someone so you always 

are alerted when they write
– Hashtags: Define a keyword:  #sometopic

http://twitter.com/



Monitoring events on Twitter 

• Goal: Can we find out when events occur by 
watching the Twitter stream? 

• Approach: Analyze Twitter stream 
– Build model of default Twitter behavior: 

‘background noise’
– Learn models for 50 specific kinds of events: 

• Topic signatures for earthquakes, fires, explosions, etc. 

– Develop methods to find event signals against the 
background noise 

– Develop methods to pinpoint locations in tweets



Tweet characteristics 1
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Weekly vocab growth

Zipf curve: Overall word freq 
distribution

Word frequencies



Tweet characteristics 2

Words come in bursts: word 
distributions per tweet

Slide 7

Common words

Location wordsEvent words



Finding kinds of 
events

• To learn topic 
signatures, we 
manually selected 
some good 
keywords, and 
(using ‘burstiness’) 
learned more co-
occurring words  
automatically 

• Studied 50 topics

Frequencies of 
kinds of events



0: ['flood']
signature:  flood(0.074695), river(0.013374), water(0.012089), flooding(0.004749),
areas(0.007776), control(0.011872), insurance(0.011557), relief(0.005406), levees(0.001876)…
* * * * * * * * * timeintervals ranked in 5.613292sec
(1281826800;1281830400),0.019086,August 14 2010 at 23 PST,1 hours,
(1280062800;1280070000),0.018256,July 25 2010 at 13 PST,2 hours,
(1280908800;1280912400),0.017363,August 04 2010 at 08 PST,1 hours,
(1287435600;1287439200),0.014191,October 18 2010 at 21 PST,1 hours, …

1: ['tornado']
signature:  tornado(0.027791), storm(0.003742), twister(0.001389), weather(0.003887),
homes(0.002850), oklahoma(0.002345), damage(0.001924), kansas(0.002177)… 
* * * * * * * * * timeintervals ranked in 5.565819sec
(1287399600;1287403200),0.014456,October 18 2010 at 11 PST,1 hours,
(1279922400;1279944000),0.004438,July 23 2010 at 22 PST,6 hours,
(1279850400;1279857600),0.002292,July 23 2010 at 02 PST,2 hours,
(1290459600;1290466800),0.001988,November 22 2010 at 21 PST,2 hours, …

2: ['shooting']
signature:  shooting(0.037280), police(0.009983), gunman(0.001702), school(0.005369),
officers(0.002311), shooters(0.001069), shootings(0.000836), shooter(0.000851), …
* * * * * * * * * timeintervals ranked in 5.552338sec
(1293649200;1293652800),0.000000,December 29 2010 at 19 PST,1 hours,
(1293033600;1293037200),0.000000,December 22 2010 at 16 PST,1 hours, …



Measuring the ‘burstiness’
• Burstiness = P(w|D) / P(w)

where P(w|D) is the word frequency in the current time 
window and P(w) is the background word frequency

• P(w|D) = [tf(w,D) + μ * cf(w)/N]  /  [|D| + μ] 

• P(w) = cf(w)/N
where μ is a smoothing parameter, μ = 0.2 current setting

• or P(w) = (cf(w) + K) / (N + K*|V|)
where K is the smoothing parameter and |V| is the total 
number of words in the vocabulary. When K=1, this is known 
as Laplacian (or add one) smoothing. This adds a fixed 
number of observations (K) to the collection frequency of each 
term in the vocabulary; we use a relatively large K (e.g., 
1,000,000)



Event evolution: Learning timelines 
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So what can we do? 

• Given some event of interest, we can learn its 
topic signature (if it’s a large enough event)
– ‘Pulling’ usage: We can go and find specific 

events if we know when it occurred and roughly 
what it was 

– ‘Pushing’ usage: We can build an Alert system 
that monitors the Twitter stream and tells you 
when something occurs 

• Exploration: We can go and search for what 
other events reliably occur together with it 

• Other sources: We can apply the techniques 
to websites (backpage.com, FaceBook…) 



Example 1: Human Trafficking
• Question: can we identify instances of: 

– Child prostitution 
– Forced labor / slavery ? 

• Activity: 
– We’re building a ‘daily broadsheet’ that lists all recent 

activity from various sources (Backpage.com, Twitter, 
MySpace…)

• Interest from several collaborators: 
– Mark Latonero, USC School of Communications
– FBI (Los Angeles Division): various people 
– Long Beach Police Department 
– US Equal Employment Opportunity Commission, LA District Office 
– DHS Investigations in Human Trafficking, LA 



Example 2: Campus Crisis 

• Question: How do people self-organize in the 
face of anomalies? 

• Activity: The Mad Hatter experiment: 
– Competitions on 2 campuses: Find the  

(unknown) anomalous event + report it 
– Analyze students’ SMS and twitter acts:

• Propagation of info through network 
• Observation -> confirmation -> certainty 

• Collaborators: 
– CCICADA team members at Rutgers U 
– CCICADA team members at RPI 



Discussion 

• Open problems: 
– Abnormal words: neologisms, weird spelling, foreign 

words, slang, etc. 
– Determining location of tweets / messages  
– Which events are of interest? 
– Events have structure: subevents ‘within’ events may 

require special treatment 
– Time window granularity: which is best?  Same for all 

events? 

• Do you know of any other uses? 
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