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The situation

 People are everywhere and observe their
environment

 \When they’re interconnected and report
their findings, we have a distributed
‘'sensor’ network

— FaceBook, Twitter, MySpace, SMS/texting...

e \WWe can track information flow on the non-
private portion of the network to determine
what Is going on



Potential uses

e Catastrophes: Situation monitoring and
response planning

« Anomaly Detection: Recognizing
problems before they occur

« Human Trafficking: Tracking down
perpetrators
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— It's free
— You choose a hame

e Using Twitter:

— Twitter users write ‘tweets’ (text messages, shorter
than 140 characters) using a computer or cellphone
— Anyone can read these messages

— You can attach yourself to someone so you always
are alerted when they write

— Hashtags: Define a keyword: #sometopic




Monitoring events on Twitter

e Goal: Can we find out when events occur by
watching the Twitter stream?

« Approach: Analyze Twitter stream

— Build model of default Twitter behavior:
‘background noise’

— Learn models for 50 specific kinds of events:
» Topic signatures for earthquakes, fires, explosions, etc.

— Develop methods to find event signals against the
packground noise

— Develop methods to pinpoint locations in tweets




Tweet characteristics 1
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Tweet characteristics 2

Words come In bursts: word
distributions per tweet

Event words

Distribution of keywords in Twitter
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Finding Kinds of
events

e To learn topic
signhatures, we
manually selected
some good
keywords, and
(using ‘burstiness’)
learned more co-
occurring words
automatically

e Studied 50 topics
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0: ['flood’]

signature: flood(0.074695), river(0.013374), water(0.012089), flooding(0.004749),
areas(0.007776), control(0.011872), insurance(0.011557), relief(0.005406), levees(0.001876)...
kR R R x xRk * timeintervals ranked in 5.613292sec
(1281826800;1281830400),0.019086,August 14 2010 at 23 PST,1 hours,
(1280062800;1280070000),0.018256,July 25 2010 at 13 PST,2 hours,
(1280908800;1280912400),0.017363,August 04 2010 at 08 PST,1 hours,
(1287435600;1287439200),0.014191,0ctober 18 2010 at 21 PST,1 hours, ...

1: ['tornado’]

signature: tornado(0.027791), storm(0.003742), twister(0.001389), weather(0.003887),
homes(0.002850), oklahoma(0.002345), damage(0.001924), kansas(0.002177)...

Kok ok kR R R R * timeintervals ranked in 5.565819sec
(1287399600;1287403200),0.014456,0ctober 18 2010 at 11 PST,1 hours,
(1279922400;1279944000),0.004438,July 23 2010 at 22 PST,6 hours,
(1279850400;1279857600),0.002292,July 23 2010 at 02 PST,2 hours,
(1290459600;1290466800),0.001988,November 22 2010 at 21 PST,2 houirs, ...

2: ['shooting']

signature: shooting(0.037280), police(0.009983), gunman(0.001702), school(0.005369),
officers(0.002311), shooters(0.001069), shootings(0.000836), shooter(0.000851), ...

Kok ok kR R R * timeintervals ranked in 5.552338sec
(1293649200;1293652800),0.000000,December 29 2010 at 19 PST,1 hours,
(1293033600;1293037200),0.000000,December 22 2010 at 16 PST,1 hours, ...



Measuring the ‘burstiness’

e Burstiness = P(w|D) / P(w)
where P(w|D) is the word frequency in the current time
window and P(w) is the background word frequency

e P(W|D) = [tf(w,D) + u * cf(w)/N] / [|D] + 4]

 P(w) = cf(w)/N
where u I1s a smoothing parameter, y = 0.2 current setting

o or P(w) = (cf(w) + K)/ (N + K*|V])
where K is the smoothing parameter and |V| is the total
number of words in the vocabulary. When K=1, this is known
as Laplacian (or add one) smoothing. This adds a fixed
number of observations (K) to the collection frequency of each
term in the vocabulary; we use a relatively large K (e.g.,
1,000,000)



Event evolution: Learning timelines
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So what can we do?

 Glven some event of interest, we can learn its
topic signature (if it’s a large enough event)

— ‘Pulling’ usage: We can go and find specific
events if we know when it occurred and roughly
what it was

— ‘Pushing’ usage: We can build an Alert system
that monitors the Twitter stream and tells you
when something occurs

 Exploration: We can go and search for what

other events reliably occur together with it

 Other sources: We can apply the techniques
to websites (backpage.com, FaceBook...)



Example 1. Human Trafficking

e Question: can we identify instances of:
— Child prostitution
— Forced labor / slavery ?
o Activity:
— We're building a ‘daily broadsheet’ that lists all recent

activity from various sources (Backpage.com, Twitter,
MySpace...)

e Interest from several collaborators:

— Mark Latonero, USC School of Communications

— FBI (Los Angeles Division): various people

— Long Beach Police Department

— US Equal Employment Opportunity Commission, LA District Office
— DHS Investigations in Human Trafficking, LA



Example 2: Campus Crisis

Question: How do people self-organize in the
face of anomalies?

« Activity: The Mad Hatter experiment:

— Competitions on 2 campuses: Find the
(unknown) anomalous event + report it

— Analyze students’ SMS and twitter acts:
e Propagation of info through network
e Observation -> confirmation -> certainty

e Collaborators:
— CCICADA team members at Rutgers U
— CCICADA team members at RPI




Discussion

 Open problems:

— Abnormal words: neologisms, weird spelling, foreign
words, slang, etc.

— Determining location of tweets / messages
— Which events are of interest?

— Events have structure: subevents ‘within’ events may
require special treatment

— Time window granularity: which is best? Same for all
events?

Do you know of any other uses?



	Continuous Geospatial Monitoring of Catastrophic Natural Disasters using Twitter
	The situation
	Potential uses
	Twitter 
	Monitoring events on Twitter 
	Tweet characteristics 1
	Tweet characteristics 2
	Finding kinds of events
	Slide Number 9
	Measuring the ‘burstiness’
	Event evolution: Learning timelines 
	So what can we do? 
	Example 1: Human Trafficking
	Example 2: Campus Crisis 
	Discussion 

