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Can cue off and coordinate shorter range sensors
Establish target identity across occlusiong y
Coordinate hand-offs across fields of view to guarantee persistent 
surveillance. 

g y
Coordinate hand-offs across fields of view to guarantee persistent 
surveillance. 



Example of a Goal:Example of a Goal:

Detect contextually  “interesting” events
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Tracking a very large number of targets:
Occlusion 
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Normal or malicious

Who is who?How many targets?
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Distinguishing contextually normal from threatening.
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Approach: dynamical models as information
encapsulation/prediction paradigms
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A  mathematical rule describing the time dependence 
of a point's position in its ambient space. . 
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Why Dynamical  Models?Why Dynamical  Models?

All the information is  encapsulated in the dynamics
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Dynamical  Models in Tracking:Dynamical  Models in Tracking:

• Model target  evolution as the 
output of an unknown system

• Learn the rule (system id)
• Use this rule to “guess”

y(t)

G
y(t-1)...y(t-n)

Works, but..Works, but..
Computationally expensive

Can’t handle time  variations



Dynamical  Models in Tracking:Dynamical  Models in Tracking:

• Model target  evolution as the 
output of an unknown system

• Learn the rule (system id)
• Use this rule to “guess”

y(t)

G
y(t-1)...y(t-n)

Key observation:Key observation:
We don’t need G, just y !



Detour: Completing missing informationDetour: Completing missing information

????

timetime
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Detour: Completing missing informationDetour: Completing missing information

Spline Interpolation

timetime
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Detour: Completing missing informationDetour: Completing missing information

time

Right Description: maximum 
smoothness
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Detour: Completing missing informationDetour: Completing missing information

timetime

Right Description: don’t add  
new rules
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Detour: Completing missing informationDetour: Completing missing information

timetime

Formally: minimize the rank of 
the underlying model
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Hankel Based PredictionHankel Based Prediction
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Receding Horizon Rank Minimization FilterReceding Horizon Rank Minimization Filter

y(t)

G
y( )



Robust  Receding Horizon Tracking Robust  Receding Horizon Tracking 

Particle 

Kalman 

RHRM 



Establishing identity across occlusionEstablishing identity across occlusion

Automatically stitched tracklets:
Look for lowest complexity joint model.p y j



Fast Event DetectionFast Event Detection

two parameters: v vtwo parameters:  v1,v2

GG2

one parameter: velocity v1 one parameter: velocity v

Key observation:  activity changes increase  overall model complexity

p y 1 one parameter: velocity v2
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Fast Event DetectionFast Event Detection

two parameters: v vtwo parameters:  v1,v2

GG2

one parameter: velocity v1 one parameter: velocity vp y 1 one parameter: velocity v2

Look for changes in the rank of the Hankel matrixg



Hankel Rank Based Fast Event DetectionHankel Rank Based Fast Event Detection



Hankel Rank Based Fast Event DetectionHankel Rank Based Fast Event Detection

Contextually abnormal 
activity

Contextually normal 
activity



Dynamics Based SegmentationDynamics Based Segmentation

Look for simplest joint models  (e.g. low Hankel rank)



SummarySummary

Dynamic vision complements traditional sensing 
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Wide area coverage: can correlate spatio-temporally 
distributed events.
Can assist other sensors by  identifying “targets of interest”

Challenges:
Robust tracking of large number of targets

Challenges:
Robust tracking of large number of targets
Avoiding data deluge 
Use of the information to uncover threats
Avoiding data deluge 
Use of the information to uncover threats

We can overcome these challenges  through  a combination of
computer vision, machine learning and dynamical systems tools
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More information as http://robustsystems.ece.neu.edu


