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1 Context

Infection risks are poorly understood:
Risk=f(exposure, dose-response)

Computational Fluid Dynamics (CFD)

simulations are detailed, expensive,

time-consuming and sensitive to
boundary conditions

Mathematical modeling techniques
often treat aerosols as gases/vapors



j Why model exposures?

Describe exposures that cannot be
monitored (i.e. low concentrations,
highly toxic/pathogenic)

Capture spatial and temporal variability
Describe loss of pathogen viability



j Markov Chain: Definition

A statistical process that retains no
memory: Only the current state
iInfluences where the process goes next

Has a countable number of states
S={s, S1, Sy, -.-S}

Has a countable time index

17={0, 1, 2, ...}



j A 1-D Markov Chain

A 1-Dimensional Walk, or the walk of a drunkard:

4 S 6 7
P(5,4) P(5,6)



1 A 3-D Markov Model




An Example: One Step

C
1- Air j>3'EXh® e

One-Step Transition Probability Matrix: P

lb States |1 2 3

2- Floor
1 b
— a c

Note: Each row in the 2 0 d 0
matrix P must sum to one:
atb+c=1; d=1; e=1

Also: Well-mixed box




An Example: One Step

C
1- Air j>3'EXh® e

One-Step Transition Probability Matrix: P

lb States |1 2 3

2- Floor
Qd 1 0.982 0.003 0.016

Assume 5 second time 2 0 1 0
steps: In one time step the
transition probabilities are:

3 0 0 1




Over time... matrix multiplication

1- Air

)

| K

If 100 particles

d

initially released, the
expected number of
particles in state 1
after 15 minutes is:
100 x 0.0353 =3.5

Probability that a particle
initially present in state 1
(air) moves into 2 or 3

Time 1- Air | 2- 3- Exh
Floor

Os 1 0 0

5s 0.9816 |0.003 0.0154

1min 0.80012 | 0.0326 |0.01672

15min | 0.0353 |0.01573|0.8074

30min |0.0012 |0.1628 |0.8359




j Movement by 15t Order Rates

Gravitational Settling, Arg =V s/ AL
Turbulent Diffusion, Arp=6D-/(AL)?
Advective Flow, A= V /AL

Vertical Surface Deposition,
P(dep)=V /AL
Vp from models



Transition Probabilities without

j Deposition

P(hold| TS)=exp(- AgAt)
P(hold| TD)=exp(- Arp At)

Assume independence:
P(hold)= P(hold|TS) P(hold|AF) P(hold|TD)

P(leave)=1-P(hold)



Transition Probabilities without

j Deposition

he probability of leaving the a state in
the Markov model in the —z or +x direction In
one time step:

1
)"TS t )LAF,—Z + g)\’TD
P(leave,—z) = P(leave) x
)\’TS + }\'AF + )"TD

)\-AF,+X + l)\’TD

P(leave,+x) = P(leave) x
)"TS + )\’AF + )\’TD



j Advantages to the Markov Model

Use measured or simulated data for
velocity field, turbulent diffusion and
deposition velocities

Long-duration simulations
Incorporate gravitational settling

Improved temporal and spatial
resolution over other zonal models

Quick and cheap to simulate



j Testing the Markov Model

Sajo et al (2002) Health Physics. 83:
871-883

Repeated release of 10g of cobalt oxide
inroom4 mby 6.6 mby 10.4 m

Collected 36-55 samples on floor/walls
per release

Measured velocity field (quiescent,
<0.25 cm/s)
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j Simulation | Results

uuuuuuuuuuuuuuu

8.20 g predicted to
deposit on floor

1.07g in air
95/104 (53%) floor

areas within 95% CI
of interpolated data;

22 (21%) >95%CI
27 (26%) <95%CI
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Y-dirgction [cm)

Simulation |l Results

X-QIrection (cin)

9.77 g predicted to
deposit on floor

0.0007 g in air

53/104 (51%) within
95%CI of
iInterpolated data

25% >95%Cl
26% <95%Cl



3 Boeing 767-300 Airplane
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Boeing 767-300 Airplane

Contours of
airborne
concentrations,
or expected
Inhaled dose
(influenza A
dose in 5 min)
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Boeing 767-300 Airplane

Particle

concentration
as a function

of time,
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1 The Next Steps...

Particle release experiments in
controlled environments: the Water

Village at the University of Arizona,
Tucson

Integration with CFD
Application to microbial
risk assessment
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