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Introduction @

® HCCI engines can provide diesel-like efficiencies and ultra-low NOy
and PM emissions — However there are several technical barriers.

@ Control of combustion phasing with changes in fueling rate is
particularly important.
— Various control techniques are available: intake heating, VCR, VVT.
— Ultimately adjust the compressed-gas temperature (T~g) at “ignition.”

® Often considered that combustion phasing can be affected by F/A
mixture = Ignition is faster with richer mixtures created by higher
fueling rates or charge-mixture inhomogeneities.

® However, as the fuel load is varied, several factors are affected, each
of which can affect combustion phasing.

— Most factors directly or indirectly cause changes in the T.

— Additionally, these factors can sometimes mask changes — or lack of
changes — due directly to F/A-mixture effects.



Objectives @

® |dentify the factors that cause changes in combustion phasing with
changes in fueling rate (fuel-air equivalence ratio, ¢).

® Systematically remove the changes due to each factor.
— Understand the relative magnitude of these factors.

® Isolate the effect of changes in fuel chemistry with equivalence ratio
to understand the importance of this factor.

— Compare behavior of various fuel-types: iso-octane, gasoline, & PRF80.

® Investigate the potential of fuel stratification for controlling
combustion phasing.



HCCI Engine and Subsystems @
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Observed Changes with Variation in Fueling
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® As fueling (¢) is varied, T-5 must
be adjusted to maintain
combustion phasing.

— 50%-burn phasing at TDC
(indication of performance).

— Adjust T4 by varying Intake
temperature (T;,).

® All fuels show a trend of a lower
required T,, with increased ¢.

— Do richer mixtures autoignite
more easily for all fuels?

— What role do other factors play?

® For example, wall heating and
residuals will change with ¢.

— Figure shows fuel-on transients
for ¢ = 0.2 and 0.3, iso-octane
(avg. of 10 events).
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Factors Causing Changes in T,, with Fueling [IE

1. Combustion duration increases at lower ¢. This requires that the
start of combustion occur earlier to maintain 50% burn at TDC.

2. Wall temperatures increase with increased ¢, causing higher T for
agivenT,,.

3. Temperature of residuals increases with ¢, reducing required T,..

4. Heating/cooling during induction changes with ¢ as the AT between
T, and T, varies, amount of fuel vaporization, & “dynamic heating.”

9. Fuel-chemistry effects.
— Differences in ¢ can affect the chemical-kinetic rates of autoignition.
— Thermodynamic properties of mixture — particularly specific heat (y=c/c,).

® Systematically remove factors 1-4 leaving only fuel-chemistry effects.
— Evaluate differences in fuel chemistry: iso-octane, gasoline, & PRF80.




1. Changes in Combustion Duration
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® Burn duration increases as ¢
reduced.

— Phasing remains very stable —
Std. Dev < 0.3°CA for 10 & 50%
burn over range of interest.

— 0.1<¢<0.3 (idle to moderate load).

® Fuel-chemistry effects should
correlate with ignition point.

® Select 10% burn as “ignition” pt.

— Use Woschni correlation to
account for heat transfer.

® Retake data with const. 10%
burn at 357.4°CA, match ¢$=0.2.

— Change in T,, with ¢ is greatly
reduced, from 24°C to 8.5°C.



2 & 3. Remove Changesin T,,, and Residuals @
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® Remove changesin T, & residuals
using alternate-firing technique.

— Hold 10% burn phasing at 357.4°.
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® Change in slope between the curves
gives relative magnitude of factors.

— ¢ < 0.2, burn duration dominates.
comb. eff. low: long burn, low heating.

— ¢ > 0.2, opposite is true.

® Separate T, & residual effects
estimated from transient data and
fire18/2 data.
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4. Heating/Cooling During Induction @

® T, # Tgpc due to heating/cooling during induction.

® Developed technique to estimate Tgp- =>|Detalls in SAE 2004-01-1900.

® Compute changes in Ty from measured changes in mass flow relative
to a base condition.
mair,base a|r+fuel P/

® |deal gas law gives: Tin effective = Tin effective,oase Y ' y
mair+fuel air In,base

® Base condition: motored T,, = T ot = 100°C, minimizes heat transfer.
— Dynamic heating = Tgpc pase = 110°C (from WAVE code, Ricardo).

® Estimate Tresiduals ~ average of Texhaust and Tblowdown'

T.

T __in effective ) mair+fue| +T
bdc

-Mm

residuals residuals

® Combine to get:
mair+fuel +M

residuals

e A straightforward procedure. Technique is very sensitive.



4 & 5. Use Ty to Isolate Effects of Fuel Chemistry @
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For fire19/1, residuals are constant;
use effective T,, rather than Tgpc.

Effective T,, curve shows only
changes due to fuel-chemistry.

— Autoignition kinetics & y = c/c,.

Does a higher ¢ enhance
autoignition for iso-octane?

— Higher ¢ = smaller y = higher T,
required for same T.

Lesser slope of Effective T;, curve
indicates an enhancement with ¢.

— Effect fairly small for iso-octane.

> Much less than sum of other four
factors.

— Single-stage ignition fuel.
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5. Fuel-Chemistry Effects — Various Fuels @
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50% Burn Phasing for Constant T,, and T, @

® 50% burn is a better indicator of engine performance.
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@ Data can also be interpreted as indicating the potential for changing

0.32

combustion phasing with mixture stratification (T, & residuals constant).

— PRE8O0: mixture stratification has a strong potential to control phasing.

— Iso-octane and gasoline: stratification offers little benefit for phasing control.




Stratification Advances Combustion for PRF-80 @
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Summary and Conclusions @

@ In addition to fuel-chemistry, several factors affect the change in
Intake-temperature required to maintain constant 50%-burn phasing

when the fueling rate is varied.

® The relative magnitude of these factors depends on the load range.
— At low loads, (¢ < 0.2), changes in burn duration have the largest effect.
— For higher loads (¢ > 0.25), changes in T, are dominant.

® The effect of residuals is relatively small in this engine.
— They could be the dominant factor in a high-residual engine.

® The effect of F/A mixture (¢) on ig. timing depends strongly on fuel type.
— Single-stage ignition fuels: iso-octane & gasoline = effect is small.

— Dual-stage ignition fuels: PRF80 = effect is substantial due to cool-flame
chemistry. (Similar effect expected for diesel fuel.)

® Mixture stratification can significantly and rapidly advance combustion
phasing for PRF80 (or by inference diesel fuel), but not for iso-octane.
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