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BackgroundBackground

Observation, reported at DEER 2003, of reduced Break Even 
Temperature during catalyzed DPF operation with biodiesel
blended with a low sulfur (325 ppm) diesel, lower than with 
ultra low sulfur diesel fuel – what is the source of this 
difference in PM regeneration process ?
Vander Wal et al. published in Combustion & Flame in 2003 
and 2004 papers demonstrating: (1) differences in the structure 
within soot primary particles with benzene, ethanol and 
acetylene, and (2) particles with less ordered structure 
provided higher oxidative reactivity
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Ultra Clean Fuels Project
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Determine the Interaction between Formulation of 
Conventional, Renewable and Synthetic Diesel Fuels and their 
Injection Characteristics
Measure Physical Properties of Fuels that Can Provide Support 
for Understanding Injection, Combustion and Emissions 
Performance of Diesel Fuels
Use Injection Studies, Physical Properties, Emissions 
Measurements and In-Cylinder Visualization to Determine 
Optimal Fuel Formulations
Link Feedstock and Fuel Production Process to Physical 
Properties and, Thereby, Injection, Combustion and Emissions 
Performance  - Characteristics of Soot from Different Fuels
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Research StrategyResearch Strategy

•Fuel Properties

•Injection 
Characteristics

•Combustion

•Pollutant 
Formation

•Particulate Filtration

•DPF Regeneration

•NOx Reduction

•Feedstock

•Fuel Production

•Fuel Properties

Feedback of Behavior and Performance Information

Spray Visualization 
Chamber
Bulk Modulus of 
Compressibility

AVL 513D Engine 
Videoscope
Particulate and 
Gaseous Emissions 

Various 
Aftertreatment 
Strategies
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Outline
Ultra Clean Transportation Fuels from Natural Gas

Outline
Ultra Clean Transportation Fuels from Natural Gas

In-Cylinder Visualization of Various Diesel Fuels in the 
Cummins ISB 5.9L engine
Influence of Fuels, Injection Timing, Combustion and 
Emissions on the Performance of Aftertreatment Devices 

Characteristics of Soot from Different Fuels

In-Cylinder Visualization of Various Diesel Fuels in the 
Cummins ISB 5.9L engine
Influence of Fuels, Injection Timing, Combustion and 
Emissions on the Performance of Aftertreatment Devices 

Characteristics of Soot from Different Fuels
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Spray and Combustion 
10% Load and 1800 RPM in Cummins 5.9L ISB

Spray and Combustion 
10% Load and 1800 RPM in Cummins 5.9L ISB

BP 15 BP 15 + 40 % Biodiesel B100
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Comparison of start of combustion

BP15

FT 100
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Injection and Rate of Heat Release Analyses
Diesel and B20 Test Fuels in the Cummins 5.9L ISB

Injection and Rate of Heat Release Analyses
Diesel and B20 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-15 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-15 Test Fuels in the Cummins 5.9L ISB
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Regeneration Rate's Dependence on NO2 produced
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Fuel Effects on Soot Structure and ReactivityFuel Effects on Soot Structure and Reactivity

Vander Wal and Tomasek, Comb & Flame, Vol. 134, 2003
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Variation in Heavy Hydrocarbon FractionVariation in Heavy Hydrocarbon Fraction

Soot Morphology

(a) BP325 Derived PM (b) BP325B20 Derived PM 
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Variation in Heavy Hydrocarbon FractionVariation in Heavy Hydrocarbon Fraction

Soot Morphology

(c) BP15 Derived PM (d) BP15B20 Derived PM 
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Compositional analysis

100 nm

Thermal Carbon Analyzer

Fuels PM 
emission

(g/h)

SOF 
content

(%)

Dry soot 
Reduction 

(%) 
relative to 

BP325
BP325 29.4 52.4

BP325-
B20

25.1 57.6 24

BP15 26.6 57.8 20

BP15-
B20

27.8 61.1 23

Fuels Organic
Carbon

(150~300oC)

Organic
Carbon

(300~450 oC)

Element
Carbon

(450~750 oC)

BP325 23 42 35

BP325-
B20

32 48 20

BP15 32 48 20

BP15-B20 27 53 20

Soxhlet extraction and gravimetric
analysis
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Soot Nanostructure – Less Ordered Nanostructure Corresponds to 
Enhanced Reactivity

(a) BP15 Derived PM (b) BP15B20 Derived PM 
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Soot Nanostructure and Its Effect on ReactivitySoot Nanostructure and Its Effect on Reactivity

Low temperature Reactivity from DSC/TGA test
- under 21% oxygen gas with treated samples
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Soot Nanostructure – Less Ordered Nanostructure 

Corresponds to Enhanced Reactivity
Time BP15 soot B20 soot

No burn-
off (a) (b)

After 30 
mins @ 
500 oC

(c) (d)
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Soot Nanostructure – XRD Analysis of BP-15 Soot Shows a 
More Ordered Nanostructure
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Soot Nanostructure – Do Neat Alternative Diesel Fuels Yield Less 
Ordered Nanostructure ?

(a) FT100 Derived PM (b) B100 Derived PM 
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Palmer, H. B., and Cullis, C. 
F., in Chemistry and Physics 
of Carbon, Vol. 1, (P. L. 
Walker, Jr. and P. A. Thrower, 
Eds.) Marcel Dekker, 1965, 
pp. 265–325.

“...properties of carbons 
formed in flames are 
remarkably little affected by 
the type of flame, the nature of 
the fuel being burnt and the 
other conditions under which 
they are produced. Any 
complete theory of carbon 
formation must of course be 
able to account for this striking 
experimental finding.”

Dobbins
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R. H. Hurt
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ConclusionsConclusions

Biodiesel Fuels
Soot nanostructure for B20 fuel blends is less ordered and 
contributes to more reactive PM
Preliminary results show B100 does not yield the same shift to a
less order soot nanostructure as B20 does

Fischer-Tropsch Fuels
The structure and luminosity of the diesel spray flame with FT diesel 
is not significantly different from that with ultra low sulfur diesel
Soot nanostructure for FT100 is not different than for conventional 
diesel fuel

Aggregate Effects on Emissions Control
Higher engine-out NOx and higher PM-SOF can enhance DPF 
regeneration and lower the Break Even Temperature (BET)
NOx/PM ratio and PM composition/reactivity are key issues in DPF 
regeneration
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Future WorkFuture Work

Ultra Clean Fuels Program
Examine COP Fischer-Tropsch Diesel Products Neat and in Blends, 
Including Blended with Biodiesel, in the Cummins ISB 5.9L 
Turbodiesel Engine
Includes Property Evaluation ( ), Combustion & Emissions Tests, 
Exhaust Aftertreatment and In-Cylinder Visualization ( )
Examine Optimization of Engine Control Parameters to Maximize the 
Benefits from the Unique Properties of the COP F-T Diesel

Other Related Work
Characterize the Impact of Engine Operating Conditions (EGR, Inj. 
Timing, Charge Composition) on Soot Nanostructure and Link to the 
Surface Chemistry of Soot
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