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Background

Observation, reported at DEER 2003, of reduced Break Even
Temperature during catalyzed DPF operation with biodiesel
blended with a low sulfur (325 ppm) diesel, lower than with
ultra low sulfur diesel fuel —what is the source of this
difference in PM regeneration process ?

Vander Wal et al. published in Combustion & Flame in 2003
and 2004 papers demonstrating: (1) differences in the structure
within soot primary particles with benzene, ethanol and
acetylene, and (2) particles with less ordered structure
provided higher oxidative reactivity




PENNSTAT The Energy Institute

|_Zkv

Objectives
Ultra Clean Fuels Project

Determine the Interaction between Formulation of
Conventional, Renewable and Synthetic Diesel Fuels and their
Injection Characteristics

Measure Physical Properties of Fuels that Can Provide Support
for Understanding Injection, Combustion and Emissions
Performance of Diesel Fuels

Use Injection Studies, Physical Properties, Emissions
Measurements and In-Cylinder Visualization to Determine
Optimal Fuel Formulations

Link Feedstock and Fuel Production Process to Physical
Properties and, Thereby, Injection, Combustion and Emissions
Performance - Characteristics of Soot from Different Fuels
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Research Strategy

Feedback of Behavior and Performance Information

*Fuel Properties Particulate Filtration

*DPF Regeneration
*NOx Reduction

Injection
Characteristics

m Spray Visualization

m AVL513D Engine m Various
Chamber Videoscope Aftertreatment
m  Bulk Modulus of ®  Particulate and Strategies

Compressibility Gaseous Emissions
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4 Outline

Ultra Clean Transportation Fuels from Natural Gas

In-Cylinder Visualization of Various Diesel Fuels in the
Cummins ISB 5.9L engine

Influence of Fuels, Injection Timing, Combustion and
Emissions on the Performance of Aftertreatment Devices
- Characteristics of Soot from Different Fuels
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v Spray and Combustion
10% Load and 1800 RPM in Cummins 5.9L ISB

BP 15 BP 15 + 40 % Biodiesel B100
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Comparison of start of combustion

BP15

FT 100
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Injection and Rate of Heat Release Analyses
Diesel and B20 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-15 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-15 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-15 Test Fuels in the Cummins 5.9L ISB
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Fuel Composition Effects on Emissions
BP-325 and BP-325/B20 Test Fuels in a High Temp Regeneration

Regeneration Rate's Dependence on NO, produced
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Fuel Effects on Soot Structure and Reactivity

Benzene Ethanol
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PENNSTAT The Energy Institute
| _Zkw

Variation in Heavy Hydrocarbon Fraction |

Soot Morphology

(a) BP325 Derived PM (b) BP325B20 Derived PM
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Variation in Heavy Hydrocarbon Fraction

Soot Morphology

(c) BP15 Derived PM (d) BP15B20 Derived PM
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Compositional analysis

Fuels PM SOF Dry soot
emission content Reduction
(g/h) (%) (%)
relative to
BP325
BP325 |29.4 52.4
BP325- | 25.1 57.6 24
B20
BP15 26.6 57.8 20
BP15- | 27.8 61.1 23
B20

Fuels Organic Organic Element
Carbon Carbon Carbon

(150~300°C) | (300~450°C) | (450~750°C)

BP325 23 42 35

BP325- 32 48 20

B20

BP15 32 48 20

BP15-B20 | 27 53 20

Soxhlet extraction and gravimetric
analysis

Thermal Carbon Analyzer
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Soot Nanostructure — Less Ordered Nanostructure Corresponds to
Enhanced Reactivity

(a) BP15 Derived PM (b) BP15B20 Derived PM
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Soot Nanostructure and Its Effect on Reactivity

Low temperature Reactivity from DSC/TGA test

- under 21% oxygen gas with treated samples
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Y Soot Nanostructure — Less Ordered Nanostructure

Corresponds to Enhanced Reactivity
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Soot Nanostructure — XRD Analysis of BP-15 Soot Shows a
More Ordered Nanostructure
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Soot Nanostructure — Do Neat Alternative Diesel Fuels Yield Less
Ordered Nanostructure ?

(a) FT100 Derived PM (b) B100 Derived PM
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Fig. 1. Micrographs of particulate material captured on lacy
carbon grids sampled from the centerline of the ethene
diffusion flame. The transition from precursor particles to
soot aggregates occurs between Z = 30 and 40 mm.

Palmer, H. B., and Cullis, C.
F., in Chemistry and Physics
of Carbon, Vol. 1, (P. L.
Walker, Jr. and P. A. Thrower,
Eds.) Marcel Dekker, 1965,
pp. 265-325.

“...properties of carbons
formed in flames are
remarkably little affected by
the type of flame, the nature of
the fuel being burnt and the
other conditions under which
they are produced. Any
complete theory of carbon
formation must of course be
able to account for this striking
experimental finding.”

Dobbins
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Fic. L. Example of the well-lnown shell/core nanc-
structure of many primary soot particles. HRTEM fringe
image of ethylene soot courtesy of Lenore Rainey at MIT
and Professor Adel Sarofim at the University of Utah.
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F16. 2. Possible nanostructures in spherical carbon bod-
ies shown as two-dimensional cross-sections, J'J'Lcludj.ng hi-
polar[8,13], radial, and nematic [ 14]. Each of these carbon
nanostructures has an analogue among low molecular
v\-eight, rad-like hqm.d r_'r)'sta]line systems confined to
spherical geometries [15].

R. H. Hurt
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Fi1G. 3. Simple discotic phases. The nematic and colum-
nar phsses are ]iquid r_‘r}siﬂ]line phases conlaining orien-
tational order but incomplete long-range positional order.
The nematic is the simplest liquid crystalline phase, pos-
sEssing no mexdes of ].mjg-range positicmal order.
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F1G. 9. Example one-dimensional phase diagram rele-
vant to soot formation precesses. Equilibrinm relations are
given asa function of molecular weight at an e'xsunple loeal
flame temperature of 1600 K. The vertical line gives an
estimate of the threshold molecular weight for the discrder
— arder transition in the bulk (unstrained) condensad
phsse based on extrapnlation of a relation for p\itch tran-
sitions [17] to hisher temperatures and higher molecular
weights, The plot also shows the isotropic core diameter as
a function of molecular wei.ght in the region abowve the tran-
silion point, where inereasing malecular weight allovws an
increasing depree of strain to be accommmedated in the or-
dered phase. Bars aand b show e'xsunple mo].ecula.rweights
of ea.rl}' fame condensation p\roducts as determined ]:w la-
ser microprobe mass spectrometry [27].
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Air Combustion
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Chemistry

C. K. Westbrook
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Conclusions

Biodiesel Fuels

Soot nanostructure for B20 fuel blends is less ordered and
contributes to more reactive PM

Preliminary results show B100 does not yield the same shift to a
less order soot nanostructure as B20 does

Fischer-Tropsch Fuels

The structure and luminosity of the diesel spray flame with FT diesel
is not significantly different from that with ultra low sulfur diesel

Soot nanostructure for FT100 is not different than for conventional
diesel fuel

Aggregate Effects on Emissions Control

Higher engine-out NOx and higher PM-SOF can enhance DPF
regeneration and lower the Break Even Temperature (BET)

NOx/PM ratio and PM composition/reactivity are key issues in DPF
regeneration
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Future Work

Ultra Clean Fuels Program

Examine COP Fischer-Tropsch Diesel Products Neat and in Blends,
Including Blended with Biodiesel, in the Cummins ISB 5.9L
Turbodiesel Engine

Includes Property Evaluation (+'), Combustion & Emissions Tests,
Exhaust Aftertreatment and In-Cylinder Visualization ()

Examine Optimization of Engine Control Parameters to Maximize the
Benefits from the Unique Properties of the COP F-T Diesel

Other Related Work

Characterize the Impact of Engine Operating Conditions (EGR, Inj.
Timing, Charge Composition) on Soot Nanostructure and Link to the
Surface Chemistry of Soot
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