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Petroleum Outlook
How much petroleum is the world consuming?

According to DOE…
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Where is the world’s oil located?
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US has extremely limited proven 
oil reserves, imports
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massive resources
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US Diesel Emissions Regulations
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To achieve emission goals:

Combustion design
After-treatment systems

Electronic controls
Alternative fuels

S and P in fuel
(also regulated)

catalyst poisons!

Combo

NOx Emissions (g/bhp*hr)



Fuel Studies at PSU
Diesel Fuels   

Hydrocarbon mixture

Biodiesel Fuels

Dimethyl Ether

+ ROH catalyst

Hydrocarbon Syngas DME

Distillation

Soybeans

Petroleum cut boiling 
~282-338oC

LSDF    325 ppm S
ULSDF  < 15 ppm S

Blends of methyl esters made 
from vegetable oils- renewable!
No sulfur, phosphorus content

Converted biomass- renewable!
Zero emission fuel, gas at STP



DME Areas Investigated

Viscosity Improvement

Raise to ASTM lower limit
(DME)

Elastomer Durability

Fuel Injector Lubrication

Mimic fuel injector response

How alternative fuels
effect physical properties



Viscometry
Principle: Time for a certain volume of liquid to

move through a calibrated capillary

Pressurizable design

Small capillary for enhanced accuracy

VL
HtgD

128
10 46πυ =Adaptable Swagelock® fitting at fill port

Test Matrix

Typical viscosity improving additives
Environmentally friendly additives

Blends of DME and diesel- with and without additives
Blends of DME and biodiesel- with and without additives



Viscometer Data
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Dramatic decrease in viscosity with addition of DME in small quantities

Two temps so response
can be extrapolated



Additives Used
Traditional

Polymethacrylate- Long chain ester (OFM, VI)

Olefin Copolymer- Ethylene/propylene non-conjugated diene (VI)

Alcohol- Ethoxylated long chains (OFM)

Synthetic

Poly-a-olefin- PAO-40  “40” refers to kinematic viscosity at 100 oC (VI)

Environmentally Friendly

Vegetable Oil- Heat modified (polymerized) soybean oil (OFM)

Vegetable Oil- Mixed fatty acids (OFM, VI)

Vegetable Oil- Oleic acid alternative (OFM, VI)



Additive Effect
1 and 5 wt % concentrations tested in 25 wt % DME
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Elastomer Durability
Chosen materials represent major types commercially available:

Buna-n
Silicon
Viton

Polyurethane
Teflon

Kalrez (fluoro-polymer)

Expensive specialty polymer with high chemical resistance

DME tested 1) right out of pressure vessel and 2) after diffusion of DME 
out of o-ring (temporary versus permanent damage)



Buna-N Fuel Response
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Strength loss is temporary and likely due to partial solvency of fuel in elastomer 
Extended exposure leads to performance compromise in DME



Kalrez Fuel Response
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Strength loss is permanent and likely due to rupture of crosslinking
Extended exposure leads to deterioration in DME



Fuel Injector Wear
Bench Testing

Goal: Faster, less expensive test that accurately
predicts fuel injector behavior

Modified Cameron-Plint wear tester

Pressurizable housing

Utilizes parts duplicating actual injector parts:
- Same geometry as diesel injector
- Same surface roughness and materials
- Operates at typical or higher frequency

Total costs per test: ~$250 vs. $5000 for full engine test
Total operational time: 3 hrs. vs. weeks for engine test

Significant savings!



Cameron-Plint Device
Variable speed motor, 0-50 Hz

Fully simulates injector motion

Pin travel distance: 1mm

Test Pins

New DME
DME-

Scuffed

Fuel Injector     
Pin

Modified Cameron-Plint

Matching outer cylinder per pin

Capable of 2 tests /cylinder 
1 per pin



Wear Scar Mapping

MicroXAM™ Surface Mapping Microscope

Wave/light interference generates a 
horizontal light plane which is used as a 
surface probe

Successive intersections between the 
probe plane and the sample are the 
relief level curves 

Pros:      Fast image acquisition 
Easy to use
Robust technique

Cons:   Res. limit ½ wavelength of light source
Curvature problematic



Wear Scar Examples
75 wt % DME/25 wt % ULSDF

Scar flattened, curvature removed

Depth of scar α severity of wear

Wear Area
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Data confirms trend of incr. wear with 
incr. [DME]

Discrimination between ULSDF and 
biodiesel blends possible



Cameron-Plint Data
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chemical corrosion; 3 body wear
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Summary

Viscosity Material Compatibility

Fuel Injector Wear

Alternative Diesel 
Fuel Understanding
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CAPTAIN – Is Port 
Left or Right?

THANKS  - CAPTAIN JOHN  
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