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1.  Mixed-mode HCCI technologies



• Single fuel system:  Diesel
• Two injection systems

– Port/manifold injection – low pressure atomizer system
– Direct injection - high-pressure injection system

• Atomizer system delivers fuel as a pre-mixed lean 
homogeneous mixture in the cylinder.

• Homogeneous charge ignites due to compression, or 
alternatively due to triggering from direct injection pulse
– Allows more control over HCCI SOC

Basic concept



Characteristics
• Small droplet size (< 1µm mean diameter) allows rapid 

evaporation during compression stroke, removing the 
need for intake air heating (leading to higher CR).

• EGR and valve actuation control (based on models of 
combustion delay and reaction rates) permits SOC 
control.

• Direct injection supplements the reaction with additional 
fuel as a function of load for high-torque output.



Engine Operation

• Low load
– Main torque from 

homogeneous charge (HC) fuel
– Direct Injection (DI) mainly for 

ignition
• Mid load

– Increasing HC fuel
– Increasing DI fuel

• High load
– Max HC fuel
– Increasing DI to full load
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Basic Injection Scheme



Diesel HCCI Methods
• External Mixture Formation

– Port-Injection/Fumigation:  fuel is injected in the intake air 
as it enters the cylinder

• Internal Mixture Preparation

– Early In-Cylinder Injection:  Fuel is injected in the cylinder 
well in advance of TDC

– Late In-Cylinder Injection:  Fuel is injected in the cylinder  
near TDC



HCCI combustion
with External Mixture Preparation

• Advantages:

– Utilizes turbulence at intake port to promote mixing; very homogenous 
charge

– For mixed mode combustion, the conventional direct injection fuel 
system can be optimized for just direct injection operation; it does not 
have to be a compromise between the different requirements of HCCI 
injection and DI injection.

• Disadvantages:

– Diesel fuel difficult to atomize with conventional atomization 
techniques

– Wall wetting can lead to high HC and smoke emissions and oil dilution



Generation 1 Atomizer

Maximum Power Consumption 320 W

Maximum Flow Rate 20 mL/min

Environmental Temperature Limits:

Lower Tested to -5 deg. C with no loss of performance

Upper Not evaluated; no problems are expected

Physical Dimensions 1” x 1” x 4”

Fuel Pressure Requirement < 40 psi

System “warm-up time” 5 seconds

Power source 12 VDC



Atomization Quality

T = 0 min.

T = 2 min.

T = 8 min.

2 mL of diesel in a 2 L flask at 
room temperature



Droplet Size Distribution
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Sample Combustion Quality

The fine atomization allows for spark ignition of diesel fuel

10 kW premixed, diesel flame, AFR = 16 burning at atmospheric conditions



Generation 2 Atomizer



Status of the Technology
• Patent pending

• Gen. 3 prototypes available for testing in September 2003
– Technology is still under development

– Current system is suitable for laboratory testing

• Improvements to be made in:
– Reducing power consumption

– Improving flow rate control

– Reducing size

• Cost to mass produce has not been evaluated
– Estimated to be between the cost of a gasoline port fuel injector 

and a direct injection diesel fuel injector



• Low momentum particles follow air streamlines

– Minimal wall impingement = low wall wetting

• Lower HC, smoke, and reduced oil dilution

– Mixing properties are very good in turbulent flows

• Can effectively atomize diesel fuel at low temperatures

• Suitable for injection of water- in- diesel emulsion

The atomizer and 
HCCI mixture preparation



2. Single-cylinder engine experiments



Experimental study

• Conducted in collaboration with 
Forschungsinstitut für Kraftfahrwesen und 
Verbrennungsmotoren, FKFS, Universität 
Stuttgart (Prof. M. Bargende).

• Single cylinder engine in controlled environment
• First round of tests completed in Spring 2003.



Cylinders 1

Valves 4

Displacement 537,7 cm^3

Bore 88,0 mm

Stroke 88,4 mm

Connecting Rod 149 mm

Geometric CR 18 : 1

Nozzle Type:  6 Holes

Injection System: Common   
Rail System 1350 bar

Single-Cylinder Engine OM 611

Single-cylinder engine



Single-Cylinder Test Cell at FKFS
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Effect of uncooled EGR
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Effect of Boost Pressure
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Effect of AFR Increase on IMEP
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Extension of Load Range
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Effect of Intake Air Temperature
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Effect of Swirl 
(Intake-Port Deactivation)
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Effect of Engine Speed 
(Crank Angle Domain)
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Effect of Engine Speed 
(Time Domain)
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Cyclic variability (100 cycles)
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Goals for atomizer development
• Generation Three Atomizer with:

– Flow rate sufficient to fuel a single cylinder HCCI 
engine at at all engine speeds

– Closed loop fuel control system with high bandwidth 
control

– 50% reduced power consumption

– Appropriate packaging for port injection

• Development of a detailed thermo-fluid dynamic 
model of the atomizer system to support the above 
efforts



3.  Future work



Atomizer characterization
• Proposed work in collaboration with Pacific 

Northwest National Laboratory (Dan Imre, Alla 
Zelenyuk-Imre):
– Characterize the physical and chemical properties of the 

spray formed by the Ohio State novel atomizer. 
• Radial and axial variation in droplet size distributions and 

number concentrations will be measured as a function of an 
array of controllable atomization parameters: flow rate, 
electrical current, fuel type, fuel viscosity, ambient pressures
and temperatures, etc. 

• These data will provide information on the kinetics of spray 
propagation, coagulation, and gas to particle partitioning to 
yield predictive relationships between atomizer operation and 
spray properties.

• Similar collaborations with Sandia, ORNL?



Additional single-cylinder 
engine tests



Multi-cylinder engine tests
• Implementation on a multi-cylinder, 

direct-injection engine in engine test 
cell.

• Investigation of steady state engine 
characteristics with mixed mode 
HCCI.
– Torque production, emissions, fuel 

consumption

Fiat JTD 2.4 liter I-5 engine

VM-Motori/DDC 2.5 liter I-4 engine



Vehicle tests
FutureTruck 2004, Ford Motor Co. 

Michigan Proving Ground, Romeo, MI


