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Talk Outline

e |Introduction

 Plasma-facilitated catalysis for NOx
reduction

« Active catalysts
 What is the plasma doing?

o Catalyst synthesis and reactivity
 What is the optimum catalyst composition?
e Some optimization of catalyst synthesis

e Studies of the reaction mechanism

e Differences In rates of the back reaction
(NO, to NO) on different catalysts

» Concept of the Cascade Reactor
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This Technology is Hydrocarbon

ﬁ- SCR with a Plasma “Reformer”

Schematic of Two Step Discharge/Catalyst Reactor
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Modeling of the Gas-Phase
Plasma Reaction Mechanisms

B Under lean-burn engine exhaust conditions,
a non-thermal plasma Is oxidative.

e A primary reaction is conversion of NO -> NO,

e The oxidation of NO in a NTP Is promoted by added
hydrocarbon.

e Added hydrocarbon is partially oxidized, and
aldehydes are a crucial product as they are most
reactive as reductant for NOXx.

 Thermal catalytic reaction of aldehydes + NO, yield
activities of >90% for reasonable flow rates.

e Understanding the products of exhaust ‘reforming’ by
the plasma has guided catalyst development efforts.
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From Balmer, et al., SAE 1999-01-3640
and Tonkyn, et al., SAE 2000-01-2896

Catalyst NO, removal, % | Temperature, | Space
°C velocity, hr-t

BaTiO, No activity 180 12,000
Al,O; (active at 20 200 12,000
higher temp.)

ZrO, No activity 180 12,000
HZSM-5, HBeta No activity 180 12,000
CuZSM-5 15-20 180 12,000
Cay 4 200 12,000
NaY 60-65 180 12,000
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Na-Y, Ba-Y, Alumina

NOx Conversion (%)
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e Alumina effective at
high temperature

o Zeolite effective at
lower temperature

e Combination
effective over wide
range

Panov, et al., SAE 2001-01-3513

Subsequently, we have developed alkali- and
alkaline earth-exchanged zeolite-Y catalysts for
plasma-assisted NOXx reduction.
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What is the optimum
cation substitution Iinto
Zeolite-Y?

Kwak, Szanyi, and Peden — Catalysis Today
(2003) In press.
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Y-Zeolites are Crystalline Silica-Alumina
Materials with 3-D Pore-Structures

« Cations compensate
charged sites In
zeolite present due
to Al substitution.

Zeolite Solution
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Catalyst Synthesis by lon Exchange

[ Base zeolite ] Ex) NaY(CBV100)

[Ion exchange solution] 41
Ex) 0.5 M solution t
of LINO, KNO Irri
CsNO, etc [ Stllrrlng ] RT, >24 h
2 ~ 4 times ( A
: : : DI water,
\ Fllterlni]/Washlng | 5T imes
Drying 100°C, air
2 ~ 4 times ( l ] ) '
{ Calcination Air, 500°C, 4 h

!

[ Me-YFAU | m=tikecsen
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Experimental Procedure and Apparatus

Simulated > Discharge

Exhaust

Volume

Gas composition

(flow ~ 12,500 hr-1)

CsHg — 525 ppm (C:N ~ 6)
NO — 250 ppm

Oxygen — 9%

H,O — 2%

N, - balance

Reaction rates were measured at
‘steady-state’ to assure that NOXx

‘reduction’ is not due to adsorption.
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Comparison of Alkali- and Alkaline Earth-Exchanged Na-Y

NOx conversion(%)
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e Alkaline earth-exchanged catalysts are generally more
active than alkali metal-Y materials.

e Ba-Y is most active and has high activity over a wide-
temperature range.
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Alkali- and Alkaline Earth-Substituted Zeolite Y:

Activity variation vs ionic radius

12

-@— Alkali metal

—A— Alkaline earth

05 08 11 14 17 2
lonic radius(A)

* TOF = # of NOx converted/supercagessec « 100000

** Alkali and alkaline earth 2-2 base

DEER Workshop, August 24-28, 2003

lonic radius(A)

Lit 0.68
Na* 0.95
K+ 1.33
Cs* 1.69
Mg2+ 0.65
Cazt 0.99
Sr2* 1.13
Baz* 1.35

U.S. Department of Energy
Pacific Northwest National Laboratory




Activity iIs a monotonic function of Ba substitution for Na
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Some optimization of
catalyst synthesis:

The role of calcination and its effect on
catalytic activity

Kwak, Szanyi, and Peden — Journal of Catalysis
(2003) In press.
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Catalyst Synthesis by lon Exchange

[ Base zeolite ] Ex) NaY(CBV100)
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Ba?* ion-exchange — no intermediate calcination

NOx conversion (%)
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e AgQueous ion
exchange
solutions
contained an
excess of Bat*2.

e A single solution
lon exchange
was sufficient to
‘saturate’ the
zeolite with Ba.
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Ba?* ion-exchange — calcined in air prior to additional exchange
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“Cation Migration in Zeolites: An in Situ Powder Diffraction and MAS NMR
Study of the Structure of Zeolite Cs(Na)-Y during Dehydration”, Grey and

coworkers, J.

Phys. Chem. B 102 (1998) 839-856.
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e Again, the

agueous ion
exchange
solutions
contained an
excess of Bat*2.

Each solution ion
exchange was
followed by a
calcination step.

Solid state cation
exchange?
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For mechanistic insight,

compare NO,
conversion rather than

NO conversion.

NO —> NO, (in the plasma)
NO, —> N,, N, O, HCN, etc. (over the catalyst)
NO, —> NO (over the catalyst — different site?)

Tonkyn, Kwak, Szanyi, and Peden —
INn preparation
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. Alkali- and Alkaline Earth-Exchanged
Na-Y — NO, Conversion
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« While virtually all NO, is reacted over alkaline earth zeolite-Y, a
considerable fraction does not react over alkali-Y catalysts.

* These differences suggest a significant difference in the reaction
mechanism over these two classes of catalysts.
U.S. Department of Energy
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FTIR and TPD indicate much weaker
adsorption of NO, on NaY relative to BaY

2020

Absorbance

BaY2-2

Absorbance

Frequency/cm-1

2300 2200 2100 2000 1900
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Frequency/lcm-1

NO, TPD of NaY and BaY2-2 FTIR of NO, adsorbed on NaY

* Normalized based on the chemisorption amount

and BaY2-2 during evacuation
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NOx Conversion Chemistry

e Fate of Nitrogen:
* NO -->NO, --> N, + N,O + HCN + NO
e Fate of Carbon:
e C3Hg; --> CH,0O + CH,CHO + CO + CO,
+ CH;OH + C5H,

o After Treatment by Plasma and Catalyst:
e >50% propene remains
 NOXx Is mainly NO again

U.S. Department of Energy
DEER Workshop, August 24-28, 2003 Pacific Northwest National Laboratory



New Multi-Step, “Cascade” System Design Achieves
l 90% NOx Conversion Target with NaY Catalyst!!
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 Patent filed, 9/01.

 Modeling has
SREVIOUS provided insight into
optimum system
design for obtaining
maximum NOX
reduction concurrent
with minimum fuel

° 0 20 %0 “0 economy penalty.
Specific Energy Deposition (J/L)

Normalized NOx

R.G. Tonkyn and S.E. Barlow, SAE 2001-01-3510
S.E. Barlow, et al., SAE 2001-01-3509
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Summary and Conclusions

Y-zeolites and alumina are very active for plasma-
facilitated NOx reduction in different temperature ranges.
NOXx conversion levels of greater than 90% are
achievable.

The plasma reactor performs NO oxidation to NO, with
chemistry that is coupled to partial hydrocarbon
oxidation.

Aldehydes, produced in the plasma, are excellent
reductants for the thermal catalytic reduction of NOx over
zeolite Y-based catalysts.

Ba-Y catalysts are the most active with the widest
temperature “window”. Improved catalyst synthesis
procedures have been developed.

Mechanistic studies point to some clear differences for
the alkali- and alkaline earth-zeolite Y catalysts,
especially with respect to the strength of NO, adsorption.
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