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Test Vehicle Configuration
NTP Assisted Catalyst Evaluation

u 2000 European production vehicle with 2.2 L common rail engine 
– Delphi development EMS
– Production FIE
– Euro 3 emission certification

u System Configuration 
– DPF + Reactor + Catalysts

u 20 Cell Parallel Plate NTP Reactor
– 15.4cc active area

u 2.5 liter SiC DPF (non-catalyzed)

u DeNOx Catalyst (Stabilized)
– Ag Al2O3  (1.67L) (Catalyst 1)
– Ag Ba-Y-Z  (3.35L)  (Catalysts 2 & 3)
– Pt oxidation (0.98L) (Catalyst 4)

u Power Supply 
– 220VAC 
– Power control based on Speed/Load
– 15KHz Pulse Density Modulation (PDM)
– Power supply efficiency 80% from wall to gas
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Pulse Density Modulation (PDM)
Power Delivery Control

u Pulse density modulation power control
– Fixed Amplitude (6kV peak)
– Automatic resonant frequency control (Fc » 15 – 20 kHz)
– Variable repetition rate based on speed/load

u US Patent 6,423,190 pulse density modulation for uniform 
barrier discharge in a non-thermal plasma reactor
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Vehicle Exhaust Configuration
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• NO to NO2 conversion > 90% over ECE 
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Net NTP Reactor
NO Conversion Efficiency
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• 80% cumulative NO to NO2 conversion up to mid EUDC
• 67% cumulative NO to NO2 overall
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• Transient control provides HCs from post injection that arrive at plasma and catalyst 
ahead of NOx spike

Post Injected HC

Modal NOx
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• Transient control of NTP power demonstrated
• 350 Watt average over MVEG
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Fuel Economy Penalty

u Power Consumption
– Fuel Economy Penalty:   5 %

u Post Injected HC
– Fuel Economy Penalty:  3 %

u Total Fuel Economy Penalty = 8 %
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NTP Assisted Catalysis 
NOx Performance
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Prep: 3 hot MVEG + cold soak

• NOx adsorption, desorption, and then reduction through ECE cycle
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• Low NOx efficiencies during high speed portion of EUDC
• Large NOx desorption during final deceleration
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Catalyst Bed Temperatures
C395  MVEG   Run #470  Stabilized ABBP Catalyst - Run #1

w/ NTP & w/ Diesel Post Injection
Catalyst Temperatures

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

Time(sec)

T
em

p
er

at
u

re
(d

eg
C

),
 V

eh
ic

le
 S

p
ee

d
(k

p
h

)

Catalyst IN
Catalyst Out
Vehicle Speed
Cat 1
Cat 2
Cat 3
Cat 4

• Catalyst bed temperatures stay below 300° C until last 100 s of MVEG
• Emphasizes the performance of the low temperature zeolite catalyst
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Test Condition
With NTP at a constant 150C
SV = 38k/h for each brick or

19k/h total

Synthetic Gas Bench (SGB) 
Catalyst Performance

NOx Reduction Efficiency of Ag-alumina + Ag-Ba-Y-zeolite Catalyst
(1 washcoated brick of the alumina followed by 1 brick of the zeolite)

• Synthetic gas bench (SGB) testing used to identify candidate catalysts
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Engine Dyno Steady State Performance
C3H6 vs Post Injection - 150°C

Stabilized Catalyst
1200 RPM, 27Nm, 97ppm NO, 150ppm NOx
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Performance with C3H6
agrees with SGB testing

Space Velocity
Ag Al2O3     40k/hr
Ag BaYZ      20k/hr

• With HC from post-injection, <20% NOx conversion 
• 50% NOx conversion similar on dyno and SGB with 500 ppm propene
• Near 15% with only propene & no NTP
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Engine Dyno Steady State Performance
C3H6 vs Post Injection - 350°C

Dyno Testing
Stabilized Catalyst

2000 RPM, 68Nm, 200ppm NO, 200 ppm NOx
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Performance with C3H6 < half 
of SGB testing at 38 K h-1

w/ 500 ppm C3H6 w/NTP stabilized

w/ Post Injection w/NTP stabilized

Space Velocity
Ag Al2O3     100k/hr
Ag BaYZ        50k/hr

• With HC from post-injection, negative NOx conversion 
• NOx conversion @ 100 K h-1 SV expected to be less than SGB data @ 38 K h-1
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NTPR Acetaldehyde Production
Engine Dyno Steady State 
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Acetaldehyde is the most efficient reductant used by these NOx catalysts

• With post injection, insufficient appropriate HC species 
exist in the exhaust to yield sufficient acetaldehyde

[97 ppm EO NO] [200 ppm EO NO]
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u 15 % NOx total system efficiency over MVEG cycle 
– 30 % ECE, 3% EUDC
– NOx adsorption and desorption affected catalyst efficiencies
– Ag Al2O3 catalyst not fully exercised due to low exhaust temperature

u Reactor exhibits good NO->NO2 conversion
uGreater than 85% HC and 62% CO efficiency on cold 

MVEG with low temperature oxidation catalyst as rear brick
u Diesel post injection calibration improved reactor efficiency 

during transients
uModest power levels are seen at low speed/load steady 

state operating points

Vehicle Test Summary
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DPF Regeneration
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DPF Dynamometer Testing
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EO NOx: 347 ppm     EO NO: 301 ppm     EO HC:  22 ppm

Speed / Load: 2000 RPM / 85 Nt m     Engine Flow: 43 gm/sec

EO PM: 1.7 gm/hr     No EGR     DPF (Type / Size): SiC / 4.1 liter

Reactor Power: 600 Watts     Reactor NO2 Efficiency: 16.2%

DPF Regeneration
305 C DPF Inlet Temperature

• Continuous regeneration occurs at 305 C with ~100 ppm NO2 in exhaust 
• DPF backpressure and soot loading reduced with NTP compared to DPF only
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DPF Regeneration
Summary

u NTP reactor reduces exhaust PM mass 20% to 30% 

u Continuous regeneration of a non-catalyzed DPF was 
demonstrated with the NTP reactor

u Three-way interaction exists between:
– Soot loading
– DPF inlet temperature
– NO2 concentration
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Conclusions

u NTP Reactor & Power Supply performance is acceptable
– Potential to reduce power consumption with short pulse power supply

u NTP assisted catalysis has low NOx performance over transient 
MVEG emission cycle

– Catalysts tested are too selective for the hydrocarbon species present in 
the exhaust

– NOx adsorption and desorption is a major challenge
– Catalyst durability and performance requires much more development  

resources

u NTP has the potential to enable continuous regeneration of a non-
catalyzed DPF, given the proper levels of temperature, soot loading, 
and NO2


