Magnetic fusion energy presents  guperc®™™
many materials challenges, |
iIncluding: |
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Materials Science Challenges

Materials issues In Magnetic Fusion Energy (ITER/DEMO)
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*Ref. H. Bolt, Max-Planck Institute for Plasma Physics, Garching, Germany
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Observed Surface Morphology in
Tungsten Exposed to Low Energy

Helium/Hydrogen Plasma Conditions
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Time-scale

Steady-state sputtering yield O (104) on surface monolayer (101° atoms/m?)

results in sputtering of every atom every 0.1 sec -> every atom sputter >108
times/year
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* Wirth, Nordlund, Whyte, and Xu, Materials Research Society Bulletin 36 (2011) 216-222

Critical Questi

What physical parameters control the time dependent evolution of the near-surface morphology and composition in the re-deposition layer (e.g.,
IS this spatial re-deposition zone ever in a steady, or quasiequilibrium, state?)—key phenomena required within predictive modeling include

ons

recycling, surface morphology, gas bubble, precipitate and second phase domains, and gas fueling/recycling;

What are the effects of high-energy neutron damage on mediating,
or exacerbating, near- surface defect evolution and trititum species
permeation and retention;

The impact of dilute impurities on surface morphology
evolution and plasma contamination (e.g., Be in plasma,
mixed material transport in tokamaks on
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Computer Science and Applied Math Challenges

Xolotl-PSI - A 3D Continuum Reaction-Diffusion
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g Bl * Proposed programming environment:
—C++, MPI, OpenMP, OpenACC (expect some CUDA/OpenCL also)
EXisting Lower Length-Scale Codes
* Plasma interface: SOLPS, VPIC, LAPS » Performance and scalability
» Micro-structural evolution: OR-RIME « Uncertainty quantification

* Kinetic Monte Carlo: PNNL KMC, SEAKMC
 Accelerated molecular dynamics: TAD, AMDF
e Molecular dynamics: LAMMPS

 Density functional theory: VASP

Critical Questions

» Analysis and visualization for understanding

» Scalable algebraic and geometric multigrid methods for diffusion-type problems, differential variational inequality (DV1) solvers, implicit-
explicit (IMEX) ordinary differential equation (ODE) integrators, and mesh coupling algorithms and software from the Frameworks,

Algorithms, and Scalable Technologies for Mathematics (FASTMath);

* Forward uncertainty propagation, inverse modeling and parameter estimation, linking information and uncertainties across scales, and
Information about model inadequacies from the Quantification of Uncertainty in Extreme Scale Computations (QUEST) Institute;

* Dynamic performance data collection, abstractions and tools for performance portability, and resilience techniques from the Institute for

Sustained Performance, Energy, and Resilience (SUPER);

« Multivariate analysis, feature identification, temporal analysis, and data formats and models from the Scalable Data Management, Analysis,

and Visualization Institute (SDAV).
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Task 1 - e Initial Xolotl development for 3D * Refine Xolotl through evaluation of IMEX solvers and scaling
Development evolution of tungsten-surfaces exposed studies;

and Refinement  to D, He and Be plasmas, to be ‘loosely . Evaluate more extensive coupling across the plasma -

of the Xolotl coupled’ to SOLPS materials interface:

PFC Simulator .« First code release at end of year 1. - Benchmark and verify Xolotl.

Task 2 - * VPIC evaluation of plasma exposure o Initiate KMC simulations of low-temperature tungsten surface
Applying and conditions in PISCES for determining response and feedback evolving surface structures to VPIC,;
Integrating Input parameters to atomistic modeling; « Continue MD/Fractal-TRIM/AMD simulations for evolving
Multiscale e Initiate MD/Fractal-TRIM/AMD tungsten surface at low-temperature and initiate simulations in
Materials simulations of tungsten surface the higher-temperature regime;

Models to exposure in the low-temperature  Initiate studies of sub-surface defect evolution and coupling
Predict PFC and  regime; Initiate atomistic studies to with KMC to evaluate impacts on D retention:;

gglsl;g/lr? ;grzgls gxg:ltjfil(t)en;sub-surface radiation damage Initiate Xolotl modeling of tungsten surface exposure in the

Burning

Plasmas models to evaluate

and gas bubble effects on
erosion/sputtering rates and surface
growth; and Devise UQ implementation

strategy.

e |Initiate reduced parameter continuum

low-temperature regime;

e Continue continuum level models to evaluate surface
morphology in low versus high-temperature regime;

e Comparison of multiscale modeling to experimental
observations; and

e Implement UQ analysis and error propagation across scales.

surface porosity

* Refine and extend Xolotl for expanded number of
unknowns to account for additional species and larger
spatial scales for tokamak condition modeling.

Initiate atomic-scale simulations and plasma -
materials interfacing for tokamak exposure conditions;

Coupled KMC - VPIC simulations of high-temperature
tungsten surface response and feedback in PISCES
experiments with pre-radiation damaged materials;

Implement UQ analysis of importance of coupled
reaction terms in Xolotl for predicted response;

Initiate Xolotl modeling in the high-temperature
PISCES regime, with coupling to SOLPS, and for
tokamak exposure conditions, with coupling to VPIC;

Comparison of multiscale modeling to experimental
observations for tokamak conditions; and

Evaluation of advantages and disadvantages of
atomsitic (KMC) versus continuum (Xolotl) methods for
long-term PFC evolution.



