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Failure of biosurveillance
 

increases disease the 
incidence and mortality 

True with all infectious diseases including
•

 

natural exposure from zoonotic

 

infections

•

 

purposeful acts of bioterrorism 

Early Detection Of Disease Outbreaks Is 
Crucial For Public Safety

Smallpox
Avian influenza
Rift valley fever
Brucellosis
Tularemia
Anthrax Image from <www.alpharubicon.com/basicnbc/basicnbc.htm>

Image from <microbes.historique.net/anthracis.html>

http://www.alpharubicon.com/basicnbc/basicnbc.htm
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Dr. Rajeev Venkayya

Special Assistant to the 
President for Biodefense

“We continue to have a great deal of difficulty in 
determining when outbreaks of infection occur in 
animals and in humans overseas. Just to be brutally 
honest, we have a lot of trouble determining when 
we have an outbreak of infectious disease in a 
community here in the United States.”

http://images.google.com/imgres?imgurl=http://www.homelanddefensejournal.com/hdl/images/photo_Venkayya.jpg&imgrefurl=http://www.homelanddefensejournal.com/hdl/conf_influenza.htm&h=2025&w=1423&sz=283&hl=en&start=3&um=1&tbnid=P-llucWl0_RPAM:&tbnh=150&tbnw=105&prev=/images%3Fq%3DDr.%2BRajeev%2BVenkayya%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DN


“Almost every problem that you come across is 
befuddled with all kinds of extraneous data of 
one sort or another; and if you can bring this 
problem down into the main issues, you can see 
more clearly what you are trying to do and 
perhaps find a solution.”

C. Shannon



A New Possibility For Biosurveillance: 
Entropy

Entropy quantifies the amount of information 
communicated within a signal

Signal strength may change when an outbreak 
starts

We are hoping to detect changes in signal 
strength early into the onset of an outbreak



Our Ultimate
 

Goal: : 
Effective Effective BiosurveillanceBiosurveillance

Use Entropy to statistically quantify the 
differences in the strength of disease 
incidence signal

Exploit differences for earlier
 

detection of a 
disease outbreak 



Current Methods Of Outbreak Detection 
Are Hit Or Miss

A frequently used method: CuSum
Compares current cumulative summed incidence to average

–

 

needs a lot of historical “non-outbreak”

 

data 
(bad for newly emerging threats)

–

 

has to be manually “reset”

(it’s also bad if new sensitivity of detection is available)

Other methods have similar problems

We need a better method



Our Entropy Method Involved the Development 
of 3 Pre-computational Steps

1)
 

Binning the Incidence Data

2)
 

Analyzing within a Temporal Window

3)
 

Moving the temporal window according to 
different Step Sizes



Bin 1

Step 1 –
 

Binning

Bin 2 Bin 3 Bin 4

Weekly Disease Incidence 
Data: 3, 2, 4, 5, 8, 10, 12, 40, 35, 17, 37, 20, 23, 25, 4,…

Binned 
Data:    1, 1, 1, 1, 2, 2, 2, 4, 4, 3, 4, 3, 3, 3, 1



Step 2 & 3 –
 

Window & Step Size

Incidence Data:

3, 2, 4, 5, 8, 10, 12, 40, 35, 17, 37, 20, 23, 25, 4,…

Calculate Entropy

Window Size = 7

Step Size = 1
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Repeats Step 4 until 
data is used up

Entropy
Step fourStep four
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Main 
Program

1) Calculate frequency 
of symbols

2) Calculate entropy
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Test Data Set
Influenza data from the Blood Research Institute of the 

BloodCenter
 

of Wisconsin (an NIH funded research center)
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Modified by artificially elongating the non-outbreak intervals to 
allow for development and testing of entropy algorithm



Step 1:  Binning
Bin disease incidence data to minimize small fluctuations
Pick random number of bins, evenly distribute
Divide data into intervals then use random number of 
bins

Bin dynamically to simulate incoming data
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Number of bins = 14
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The window should be 
small enough to detect 
the phase shift from the 
endemic level to the 
outbreak.

Step 2:
 

Window Size
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Step 3:
 

Step Size
Adjusting the step size helps eliminate variations in 
incidence data caused by things like weekends and 
holidays in daily datasets.
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Next steps: Refinements & Extensions

Impact of binning, window and step 
sizes on entropy technique
–

 

Experimental and theoretical work needed 

Surveillance data versus “actual”
disease process



A Mathematical model of SARS showed how Isolation and Quarantine measures could 
reduce the size of a SARS outbreak by a factor of 1000. The mathematical results 
agreed with actual observations in the greater Toronto area (JAMA, 2003)

Mathematical Epidemiology  



Surveillance vs. Disease

S I RReal 
Disease

Some healthy 
people get 

tested

Some sick 
people get 

tested

Some recovered people get 
tested (because they don’t 
realize they were ever sick)

Test +
Test - Test + Test - Test +

Test -
False + True +True - False - False +

True -

S I R

β γ

Surveillance 
Process

Reported Disease



Application of entropy to biosurveillance and 
bioterrorism data.
Algorithms for calculating and monitoring 
changes in entropy.
Entropy aided detection of beginnings of 
outbreak scenarios.
Tying in Infectious Disease Models

Related Research Topics:Related Research Topics:
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